1. Let $A=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & -3 & 0 \\ 1 & 0 & 1\end{array}\right)$.
(a) Determine the singular values of A.
(b) Find an orthogonal matrix V so that $V^{T} A^{T} A V=\Sigma^{2}=\left(\begin{array}{ccc}\sigma_{1}^{2} & 0 & 0 \\ 0 & \sigma_{2}^{2} & 0 \\ 0 & 0 & \sigma_{3}^{2}\end{array}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}$.
(c) Find an orthogonal matrix U such that for each nonzero singular value σ_{i} of A, the corresponding columns \mathbf{u}_{i} of U and \mathbf{v}_{i} of V satisfy $\mathbf{u}_{i}=\frac{1}{\sigma_{i}} A \mathbf{v}_{i}$.
(d) Write the singular value decomposition $A=U \Sigma V^{T}$.
2. Let $A=U \Sigma V^{T}$ be the singular value decomposition of a $m \times n$ matrix A of rank r with nonzero singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$. Write $U=\left(\begin{array}{lll}\mathbf{u}_{1} & \cdots & \mathbf{u}_{m}\end{array}\right)$ and $V=\left(\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}\end{array}\right)$.
(a) Show that $\left(\begin{array}{lll}\mathbf{u}_{1} & \cdots & \mathbf{u}_{r}\end{array}\right)$ is an orthonormal basis for $R(A)$.
(b) Show that $\left(\begin{array}{lll}\mathbf{u}_{r+1} & \cdots & \mathbf{u}_{m}\end{array}\right)$ is an orthonormal basis for $N\left(A^{T}\right)$.
(c) Show that $\left(\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{r}\end{array}\right)$ is an orthonormal basis for $R\left(A^{T}\right)$.
(d) Show that $\left(\begin{array}{lll}\mathbf{v}_{r+1} & \cdots & \mathbf{v}_{n}\end{array}\right)$ is an orthonormal basis for $N(A)$.
3. Show that if A is a symmetric matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then the singular values of A are $\left|\lambda_{1}\right|,\left|\lambda_{2}\right|, \ldots,\left|\lambda_{n}\right|$.
4. Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 0 & 0\end{array}\right)$.

Determine the pseudoinverse A^{+}and verify that A and A^{+}satisfy the four Penrose conditions:

1. $A A^{+} A=A$.
2. $A^{+} A A^{+}=A^{+}$.
3. $\left(A A^{+}\right)^{T}=A A^{+}$.
4. $\left(A^{+} A\right)^{T}=A^{+} A$.
5. Given a $m \times n$ matrix A, and let A^{+}be the pseudoinverse of A. Verify each of the following identities.
(a) $\left(A^{+}\right)^{+}=A$.
(b) $\left(A A^{+}\right)^{2}=A A^{+}$.
(c) $\left(A^{+} A\right)^{2}=A^{+} A$.
6. Show that if A is a $m \times n$ matrix of rank n, then the pseudoinverse $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$.
