1. Let Q be an orthogonal matrix.
(a) Show that if λ is an eigenvalue of Q, then $|\lambda|=1$.
(b) Show that $|\operatorname{det}(Q)|=1$.
2. Let λ_{1} and λ_{2} be distinct eigenvalues of A. Let \mathbf{x} be an eigenvector of A belonging to λ_{1} and let \mathbf{y} be an eigenvector of A^{T} belonging to λ_{2}. Show that $\mathbf{x} \perp \mathbf{y}$.
3. Let A and B be $n \times n$ matrices. Show that:
(a) If λ is a nonzero eigenvalue of $A B$, then it is also an eigenvalue of $B A$.
(b) If $\lambda=0$ is an eigenvalue of $A B$, then $\lambda=0$ is also an eigenvalue of $B A$.
4. Solve each of the following initial value problems:
(a)

$$
\begin{array}{ll}
y_{1}^{\prime}=-y_{1}+2 y_{2} & y_{1}(0)=3 \\
y_{2}^{\prime}=2 y_{1}-y_{2} & y_{2}(0)=1
\end{array}
$$

(b)

$$
\begin{array}{ll}
y_{1}^{\prime}=y_{1}-2 y_{2} & y_{1}(0)=1 \\
y_{2}^{\prime}=2 y_{1}+y_{2} & y_{2}(0)=-2
\end{array}
$$

5. Given

$$
\mathbf{Y}=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots+c_{n} e^{\lambda_{n} t} \mathbf{x}_{n}
$$

is the solution to the initial value problem

$$
\mathbf{Y}^{\prime}=A \mathbf{Y}, \quad \mathbf{Y}(0)=\mathbf{Y}_{0}
$$

(a) Show that $\mathbf{Y}_{0}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2} \cdots+c_{n} \mathbf{x}_{n}$.
(b) Let $X=\left(\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}\end{array}\right)$ and $\mathbf{c}=\left(\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right)$.

Given that the vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ are linearly independent, show that $\mathbf{c}=X^{-1} \mathbf{Y}_{0}$.
6. (a) Transform the $n^{\text {th }}$-order equation $y^{(n)}=a_{0} y+a_{1} y^{\prime}+\cdots+a_{n-1} y^{(n-1)}$ into a system of first-order equations by setting $y_{1}=y$ and $y_{k+1}=y_{k}^{\prime} \quad k=1, \ldots, n-1$.
(b) Determine the characteristic polynomial of the coefficient matrix of this system.

