1. Let P_{3} be the inner product space of polynomials of degree less than 3 with inner product $\langle p, q\rangle=\int_{-1}^{1} p(t) q(t) d t$. Let $g_{1}(t)=1$ and $g_{2}(t)=t$. Find a basis for $\operatorname{Span}\left(g_{1}, g_{2}\right)^{\perp}$, the orthogonal complement of the subspace of P_{3} spanned by g_{1} and g_{2}.
2. Let \mathbf{u} and \mathbf{v} be any two vectors in an inner product space V.
(a) Show that $\|\mathbf{u}+\mathbf{v}\|^{2}+\|\mathbf{u}-\mathbf{v}\|^{2}=2\|\mathbf{u}\|^{2}+2\|\mathbf{v}\|^{2}$.
(b) Show that if $\|\mathbf{u}-\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$, then \mathbf{u} and \mathbf{v} are orthogonal.
3. Let $A=\left(\begin{array}{rr}\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$.
(a) Find the projection matrix P that projects vectors in \mathbb{R}^{4} onto $R(A)$.
(b) Find an orthonormal basis for $N\left(A^{T}\right)$.
(c) Determine the projection matrix Q that projects vectors in \mathbb{R}^{4} onto $N\left(A^{T}\right)$.
4. Let A be a $m \times n$ matrix, let P be the projection matrix that projects vectors in \mathbb{R}^{m} onto $R(A)$, and let Q be the projection matrix that projects vectors in \mathbb{R}^{n} onto $R\left(A^{T}\right)$.
(a) Show that $I-P$ is the projection matrix from \mathbb{R}^{m} onto $N\left(A^{T}\right)$.
(b) Show that $I-Q$ is the projection matrix from \mathbb{R}^{n} onto $N(A)$.
5. Let \mathbf{v} be a vector in an inner product space V and let \mathbf{p} be the projection of \mathbf{v} onto an n-dimensional subspace S of V. Show that $\|\mathbf{p}\|^{2}=\langle\mathbf{p}, \mathbf{v}\rangle$.
6. Consider the inner product space $C[-1,1]$ of continuous functions on $[-1,1]$ with inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t
$$

Find an orthonormal basis for $\operatorname{Span}\left(1, x, x^{2}\right)$, the subspace of $C[-1,1]$ spanned by $\left\{1, x, x^{2}\right\}$.
7. Determine the $Q R$ factorization of $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$.
8. Let $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}, \mathbf{x}_{k+1}, \ldots, \mathbf{x}_{n}\right\}$ be an orthonormal basis for an inner product space V. Let $S_{1}=\operatorname{Span}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)$, the subspace of V spanned by $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ and $S_{2}=\operatorname{Span}\left(\mathbf{x}_{k+1}, \ldots, \mathbf{x}_{n}\right)$, the subspace of V spanned by $\left\{\mathbf{x}_{k+1}, \ldots, \mathbf{x}_{n}\right\}$. Show that $S_{1} \perp S_{2}$.

