Math 102 Homework Assignment 4 Due Thursday, May 6, 2021

- 1. Let P_3 be the inner product space of polynomials of degree less than 3 with inner product $\langle p,q \rangle = \int_{-1}^{1} p(t)q(t) dt$. Let $g_1(t) = 1$ and $g_2(t) = t$. Find a basis for $\text{Span}(g_1,g_2)^{\perp}$, the orthogonal complement of the subspace of P_3 spanned by g_1 and g_2 .
- 2. Let \mathbf{u} and \mathbf{v} be any two vectors in an inner product space V.
 - (a) Show that $\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$.
 - (b) Show that if $\|\mathbf{u} \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$, then \mathbf{u} and \mathbf{v} are orthogonal.

3. Let
$$A = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
.

- (a) Find the projection matrix P that projects vectors in \mathbb{R}^4 onto R(A).
- (b) Find an orthonormal basis for $N(A^T)$.
- (c) Determine the projection matrix Q that projects vectors in \mathbb{R}^4 onto $N(A^T)$.
- 4. Let A be a $m \times n$ matrix, let P be the projection matrix that projects vectors in \mathbb{R}^m onto R(A), and let Q be the projection matrix that projects vectors in \mathbb{R}^n onto $R(A^T)$.
 - (a) Show that I P is the projection matrix from \mathbb{R}^m onto $N(A^T)$.
 - (b) Show that I Q is the projection matrix from \mathbb{R}^n onto N(A).
- 5. Let **v** be a vector in an inner product space V and let **p** be the projection of **v** onto an *n*-dimensional subspace S of V. Show that $\|\mathbf{p}\|^2 = \langle \mathbf{p}, \mathbf{v} \rangle$.
- 6. Consider the inner product space C[-1,1] of continuous functions on [-1,1] with inner product

$$\langle f,g\rangle = \int_{-1}^{1} f(t)g(t) \, dt.$$

Find an orthonormal basis for $\text{Span}(1, x, x^2)$, the subspace of C[-1, 1] spanned by $\{1, x, x^2\}$.

- 7. Determine the *QR* factorization of $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.
- 8. Let $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k, \mathbf{x}_{k+1}, \dots, \mathbf{x}_n\}$ be an orthonormal basis for an inner product space V. Let $S_1 = \text{Span}(\mathbf{x}_1, \dots, \mathbf{x}_k)$, the subspace of V spanned by $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ and $S_2 = \text{Span}(\mathbf{x}_{k+1}, \dots, \mathbf{x}_n)$, the subspace of V spanned by $\{\mathbf{x}_{k+1}, \dots, \mathbf{x}_n\}$. Show that $S_1 \perp S_2$.