1. Let A be a $m \times n$ matrix. Show that:
(a) If $\mathbf{x} \in N\left(A^{T} A\right)$, then $A \mathbf{x} \in R(A) \cap N\left(A^{T}\right)$.
(b) $N\left(A^{T} A\right)=N(A)$.
2. Let V and W be subspaces of \mathbb{R}^{n} such that $V \subset W$. Show that $W^{\perp} \subset V^{\perp}$.
3. Suppose A is a symmetric $n \times n$ matrix. Let V be a subspace of \mathbb{R}^{n} with the property that $A \mathbf{x} \in V$ for every $\mathbf{x} \in V$. Show that $A \mathbf{y} \in V^{\perp}$ for every $\mathbf{y} \in V^{\perp}$. (Remark: The subspace V is said to be invariant under A. This exercise shows that if V is an invariant subspace under A, then so is V^{\perp}.)
4. Let $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right)$ and $b=\left(\begin{array}{l}1 \\ 3 \\ 8 \\ 2\end{array}\right)$.
(a) Find the orthogonal projection of \mathbf{b} onto $R(A)$.
(b) Describe all least squares solutions to $A \mathbf{x}=\mathbf{b}$.
5. Let A be a $n \times n$ matrix. Given that $\left(\begin{array}{cc}A & I \\ O & A^{T}\end{array}\right)\binom{\hat{\mathbf{x}}}{\mathbf{r}}=\binom{\mathbf{b}}{\mathbf{0}}$.

Show that $\hat{\mathbf{x}}$ is a least squares solution of the system $A \mathbf{x}=\mathbf{b}$ and that \mathbf{r} is the residual vector.
6. Given a $m \times n$ matrix A. Let $\hat{\mathbf{x}}$ be a solution to the least squares problem $A \mathbf{x}=\mathbf{b}$. Show that a vector $\mathbf{y} \in \mathbf{R}^{n}$ will also be a least squares solution if an only if $\mathbf{y}=\hat{\mathbf{x}}+\mathbf{z}$ for some vector $\mathbf{z} \in N(A)$.

