1. Let L be a linear operator on \mathbb{R}^{n} with the property that $L(\mathbf{x})=\mathbf{0}$ for some nonzero vector $\mathbf{x} \in \mathbb{R}^{n}$. Let $A=[L]_{\mathcal{E}}$ be the matrix representing L with respect to the standard basis $\mathcal{E}=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ of \mathbb{R}^{n}. Show that A is singular.
2. Let L be a linear operaton on a vector space V. Let $A=[L]_{\mathcal{B}}$ be the matrix representing L with respect to a basis $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V. Show that A^{m} is the matrix representing L^{m} with respect to \mathcal{B}; that is, show that $\left[L^{m}\right]_{\mathcal{B}}=\left([L]_{\mathcal{B}}\right)^{m}$.
3. Suppose $A=S \Lambda S^{-1}$, where Λ is a diagonal matrix with diagonal elements $\lambda_{1}, \ldots, \lambda_{n}$. Write $S=\left[\begin{array}{lll}\mathbf{s}_{1} & \cdots & \mathbf{s}_{n}\end{array}\right]$; that is, \mathbf{s}_{i} is the $i^{\text {th }}$ column of S.
(a) Show that $A \mathbf{s}_{i}=\lambda_{i} \mathbf{s}_{i}$ for $i=1, \ldots, n$.
(b) Show that if $\mathbf{x}=\alpha_{1} \mathbf{s}_{1}+\alpha_{2} \mathbf{s}_{2}+\cdots+\alpha_{n} \mathbf{s}_{n}$, then $A^{k} \mathbf{x}=\alpha_{1} \lambda_{1}^{k} \mathbf{s}_{1}+\alpha_{2} \lambda_{2}^{k} \mathbf{s}_{2}+\cdots+\alpha_{n} \lambda_{n}^{k} \mathbf{s}_{n}$.
(c) Suppose $\left|\lambda_{i}\right|<1$ for $i=1, \ldots, n$. What happens to $A^{k} \mathbf{x}$ as $k \rightarrow \infty$? Explain.
4. Let A and B be similar matrices.
(a) Show that A^{T} and B^{T} are similar.
(b) Show that A^{k} and B^{k} are similar for every positive integer k.
5. Given any two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}. Prove the triangle inequality: $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$. [Hint: Show that $\|\mathbf{u}+\mathbf{v}\|^{2} \leq(\|\mathbf{u} \mid+\| \mathbf{v} \|)^{2}$.]

6 . Let \mathbf{x} and \mathbf{y} be vectors in \mathbb{R}^{n}. Define

$$
\mathbf{p}=\left(\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}}\right) \mathbf{y} \quad \text { and } \quad \mathbf{z}=\mathbf{x}-\mathbf{p}
$$

(a) Show that $\mathbf{p} \perp \mathbf{z}$.
(b) If $\|\mathbf{p}\|=6$ and $\|\mathbf{z}\|=8$, determine the value of $\|\mathbf{x}\|$.

