- 1. Let *L* be a linear operator on \mathbb{R}^n with the property that $L(\mathbf{x}) = \mathbf{0}$ for some nonzero vector $\mathbf{x} \in \mathbb{R}^n$. Let $A = [L]_{\mathcal{E}}$ be the matrix representing *L* with respect to the standard basis $\mathcal{E} = \{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ of \mathbb{R}^n . Show that *A* is singular.
- 2. Let *L* be a linear operaton on a vector space *V*. Let $A = [L]_{\mathcal{B}}$ be the matrix representing *L* with respect to a basis $\mathcal{B} = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ of *V*. Show that A^m is the matrix representing L^m with respect to \mathcal{B} ; that is, show that $[L^m]_{\mathcal{B}} = ([L]_{\mathcal{B}})^m$.
- 3. Suppose $A = S\Lambda S^{-1}$, where Λ is a diagonal matrix with diagonal elements $\lambda_1, \ldots, \lambda_n$. Write $S = \begin{bmatrix} \mathbf{s}_1 & \cdots & \mathbf{s}_n \end{bmatrix}$; that is, \mathbf{s}_i is the *i*th column of *S*.
 - (a) Show that $A\mathbf{s}_i = \lambda_i \mathbf{s}_i$ for $i = 1, \dots, n$.
 - (b) Show that if $\mathbf{x} = \alpha_1 \mathbf{s}_1 + \alpha_2 \mathbf{s}_2 + \dots + \alpha_n \mathbf{s}_n$, then $A^k \mathbf{x} = \alpha_1 \lambda_1^k \mathbf{s}_1 + \alpha_2 \lambda_2^k \mathbf{s}_2 + \dots + \alpha_n \lambda_n^k \mathbf{s}_n$.
 - (c) Suppose $|\lambda_i| < 1$ for i = 1, ..., n. What happens to $A^k \mathbf{x}$ as $k \to \infty$? Explain.
- 4. Let A and B be similar matrices.
 - (a) Show that A^T and B^T are similar.
 - (b) Show that A^k and B^k are similar for every positive integer k.
- 5. Given any two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n . Prove the triangle inequality: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$. [Hint: Show that $\|\mathbf{u} + \mathbf{v}\|^2 \le (\|\mathbf{u}\| + \|\mathbf{v}\|)^2$.]
- 6. Let \mathbf{x} and \mathbf{y} be vectors in \mathbb{R}^n . Define

$$\mathbf{p} = \left(\frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}}\right) \mathbf{y} \text{ and } \mathbf{z} = \mathbf{x} - \mathbf{p}.$$

- (a) Show that $\mathbf{p} \perp \mathbf{z}$.
- (b) If $\|\mathbf{p}\| = 6$ and $\|\mathbf{z}\| = 8$, determine the value of $\|\mathbf{x}\|$.