1. The inverse of $\left[\begin{array}{ccc}I & 0 & 0 \\ C & I & 0 \\ A & B & I\end{array}\right]$ is $\left[\begin{array}{ccc}I & 0 & 0 \\ Z & I & 0 \\ X & Y & I\end{array}\right]$.

Find X, Y, and Z.
2. Let $A=\left[\begin{array}{cc}A_{11} & A_{12} \\ O & A_{22}\end{array}\right]$, with all four blocks are $n \times n$ matrices and A_{11} and A_{22} nonsingular.
(a) Show that A is nonsingular and that A^{-1} is of the form $\left[\begin{array}{cc}A_{11}^{-1} & C \\ O & A_{22}^{-1}\end{array}\right]$.
(b) Determine C.
3. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$.
(a) Find the transition matrix corresponding to the change of basis from $\mathcal{E}=\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right]$ to $\mathcal{U}=\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$.
(b) Find the coordinates of each of the following vectors with respect to the basis \mathcal{U} :
(i) $\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$
(ii) $\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$
4. (a) Find the transition matrix representing the change of coordinates on P_{3} for the ordered basis $\mathcal{E}=\left[1, x, x^{2}\right]$ to the ordered basis $\mathcal{D}=\left[1,1+x, 1+x+x^{2}\right]$.
(b) Find the coordinates $[p]_{\mathcal{D}}$ for the polynomial $p=3+2 x+x^{2}$ with respect to the ordered basis \mathcal{D}.
5. Let L be a linear operator on \mathbb{R}^{1} such that $L(1)=a$. Show that $L(x)=a x$ for every $x \in \mathbb{R}^{1}$.
6. Let $\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ be a basis for a vector space V, and let L_{1} and L_{2} be two linear transformations mapping V into a vector space W. Show that if $L_{1}\left(\mathbf{v}_{i}\right)=L_{2}\left(\mathbf{v}_{i}\right)$ for each $i=1, \ldots, n$, then $L_{1}=L_{2}$; that is, $L_{1}(\mathbf{v})=L_{2}(\mathbf{v})$ for every $\mathbf{v} \in V$.

