We first calculate the coefficients c_{n} of the exponential series for e^{x}. They are given by the following formula (observe that in the previously posted solution the factor in front of the integral was wrong):

$$
\begin{gathered}
c_{n}=\frac{1}{2 \ell} \int_{-\ell}^{\ell} e^{x} e^{-i \frac{n \pi}{\ell} x} d x= \\
=\frac{1}{2 \ell\left(1-i \frac{n \pi}{\ell}\right)}\left(e^{\ell-i n \pi}-e^{i n \pi-\ell}\right)= \\
=\frac{(-1)^{n}(\ell+i n \pi)}{\ell^{2}+n^{2} \pi^{2}} \sinh (\ell)
\end{gathered}
$$

since $e^{i n \pi}=(-1)^{n}$ and $\sinh (x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)$. Similarly, we obtain for the coefficients \tilde{c}_{n} of the exponential series for e^{-x} that

$$
\tilde{c}_{n}=\frac{(-1)^{n}(\ell-i n \pi)}{\ell^{2}+n^{2} \pi^{2}}
$$

As $\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)$, we obtain

$$
\cosh x=\sum_{n} \frac{(-1)^{n} \ell}{\ell^{2}+n^{2} \pi^{2}} e^{n \pi i x / \ell}
$$

