MATH 104A NUMBER THEORY - FINAL WINTER 2000

Instructor: Wenzl

1. Compute the smallest residue of $47^{2521} \bmod 155$.
2. Find a primitive root $\bmod 343=7^{3}$. Justify your steps.
3. A message is encoded via the Pohlig-Hellman exponentiation code using the prime 2591 and exponent $e=13$, i.e. a number $M<2591$ is encoded to a number C via $C \equiv M^{13} \bmod 2591$. Compute the exponent d for decoding it.
4. For the following Diophantine equation, either find all solutions or show that there exist no solutions: $60 x+18 y=97$.
5. (a) Prove that the equation $x^{3} \equiv 1 \bmod p$ only has one solution if p is a prime such that $p \equiv 2 \bmod 3$.
(b) Prove that if a is a solution of $x^{3} \equiv 1 \bmod n$, then so is a^{2}.
6. Compute all solutions of $x^{3}-1 \equiv 0 \bmod 1313$. (Hint: You can use the statements of Problem 7 regardless whether you could do it or not.)
