VIBRATIONS OF A DRUMHEAD

These are supplementary notes to Chapter 10.2 in the book of W. Strauss with the same title. We will refer to it as just the book. The notes do not contain any additional material. I have only added a few more details, and I have changed the presentation a little to something I personally like better.

Let $D \subset \mathbf{R}^{2}$ be the disk of radius a, given by $x^{2}+y^{2} \leq a^{2}$. We consider the two-dimensional wave equation

$$
u_{t t}=c^{2} \Delta u=c^{2}\left(u_{x x}+u_{y y}\right)
$$

with the boundary condition $u=0$ on the boundary of D, and the usual initial conditions

$$
u(x, y, 0)=\phi(x, y), \quad u_{t}(x, y, 0)=\psi(x, y)
$$

We are going to use polar coordinates to solve this problem. Recall that

$$
\begin{equation*}
\Delta u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta} . \tag{1}
\end{equation*}
$$

We now consider solutions of the form $u(t, r, \theta)=T(t) R(r) \Theta(\theta)$. We separate variables as usual, and obtain

$$
\begin{equation*}
\frac{T^{\prime \prime}}{c^{2} T}=-\lambda=\frac{R^{\prime \prime}}{R}+\frac{R^{\prime}}{r R}+\frac{\Theta^{\prime \prime}}{r^{2} \Theta} \tag{2}
\end{equation*}
$$

Observe that if we set $\tilde{u}(r, \theta)=R(r) \Theta(\theta)$, the second equality of (2) together with (1) imply

$$
\begin{equation*}
\Delta \tilde{u}=-\lambda \tilde{u} \tag{3}
\end{equation*}
$$

If we again separate variables in the second equality of (2), we obtain

$$
\frac{\Theta^{\prime \prime}}{\Theta}=-\gamma=-\lambda r^{2}+\frac{r^{2} R^{\prime \prime}}{R}+\frac{r R^{\prime}}{R} .
$$

From the first equality, we obtain that Θ is a linear combination of $\cos \sqrt{\gamma} \theta$ and $\sin \sqrt{\gamma} \theta$. The equality $\Theta(\theta+2 \pi)=\Theta$, by periodicity of θ for polar coordinates implies that $\gamma=n^{2}$ and

$$
\begin{gathered}
\Theta(\theta)=A_{n} \cos (n \theta)+B_{n} \sin (n \theta), \\
T(t)=C_{n} \cos (\lambda c t)+D_{n} \sin (\lambda c t), \\
R^{\prime \prime}+\frac{1}{r} R_{r}+\left(\lambda-\frac{n^{2}}{r^{2}}\right) R=0,
\end{gathered}
$$

with the boundary conditions $R(0)$ finite and $R(a)=0$. The latter condition will put restrictions on the choice of λ, as we shall see. Substituting $\rho=\sqrt{\lambda} r$, one checks that this ODE transforms to Bessel's equation

$$
R_{\rho \rho}+\frac{1}{\rho} R_{\rho}+\left(1-\frac{n^{2}}{\rho^{2}}\right) R=0
$$

Setting up the power series $R(\rho)=\rho^{n} \sum_{k}^{\infty} a_{k} \rho^{k}$, and choosing $a_{0}=1 /\left(2^{n} n!\right)$, one obtains the solution $R=J_{n}$ given by (see p 266)

$$
J_{n}(\rho)=\sum_{j=0}^{\infty}(-1)^{j} \frac{(\rho / 2)^{2 j}}{j!(n+j)!}
$$

These are called Bessel functions, which look like damped cosines, see the picture and discussion on p. 267 of the book. In particular, one can show that J_{n} has infinitely many zeros, which we can arrange as

$$
0<z_{n, 1}<z_{n, 2}<z_{n, 3}<\ldots
$$

where we ignore the zero $z=0$ of $J_{n}(\rho)$ for $n>0$. Now the boundary condition $R(a)=0$ implies $J_{n}(\sqrt{\lambda} a)=0$. Hence $\lambda=\lambda_{n, m}$ for one of the positive numbers $\lambda_{n, m}$ determined by

$$
\sqrt{\lambda_{n, m}} a=z_{n, m}
$$

In particular, this also implies that we obtain solutions

$$
\begin{aligned}
& u_{n, m}^{(c, c)}=\cos \left(\sqrt{\lambda_{n, m}} c t\right) J_{n}\left(\sqrt{\lambda_{n, m}} r\right) \cos (n \theta), \\
& u_{n, m}^{(c, s)}=\cos \left(\sqrt{\lambda_{n, m}} c t\right) J_{n}\left(\sqrt{\lambda_{n, m}} r\right) \sin (n \theta), \\
& u_{n, m}^{(s, c)}=\sin \left(\sqrt{\lambda_{n, m}} c t\right) J_{n}\left(\sqrt{\lambda_{n, m}} r\right) \cos (n \theta), \\
& u_{n, m}^{(s, s)}=\sin \left(\sqrt{\lambda_{n, m}} c t\right) J_{n}\left(\sqrt{\lambda_{n, m}} r\right) \sin (n \theta) .
\end{aligned}
$$

These solutions turn out to be linearly independent for $n>0$. If $n=0, u_{0, m}^{(c, s)}=0=u_{0, m}^{(s, s)}$. Hence we obtain

$$
\begin{aligned}
& u_{0, m}^{(c, c)}=u_{n, m}^{(c)}=\cos \left(\sqrt{\lambda_{n, m}} c t\right) J_{n}\left(\sqrt{\lambda_{n, m}} r\right), \\
& u_{0, m}^{(s, c)}=u_{n, m}^{(s)}=\sin \left(\sqrt{\lambda_{n, m}} c t\right) J_{n}\left(\sqrt{\lambda_{n, m}} r\right) .
\end{aligned}
$$

Finally, we also obtain functions $\tilde{u}_{n, m}^{(c)}$ and $\tilde{u}_{n, m}^{(s)}$ from the functions above by removing their $\cos \left(\sqrt{\lambda_{n, m}} c t\right)$ resp $\sin \left(\sqrt{\lambda_{n, m}} c t\right)$ factor. E.g. we have

$$
\tilde{u}_{n, m}^{(c)}=\cos (n \theta) J_{n}\left(\sqrt{\lambda_{n, m}} r\right)
$$

Theorem (a) The functions $\tilde{u}_{n, m}^{(\epsilon)}$, where $\epsilon=c$ or $\epsilon=s$, are eigenfunctions with eigenvalue $\lambda=\lambda_{n, m}$ of $\Delta u=-\lambda u$.
(b) All these eigenfunctions are mutually orthogonal with respect to the real inner product

$$
(f, g)=\iint_{D} f(x, y) g(x, y) d x d y
$$

(c) In particular, we also have

$$
\int_{0}^{a} J_{n}\left(\sqrt{\lambda_{n, m}} r\right) J_{n}\left(\sqrt{\lambda_{n, m^{\prime}}} r\right) r d r=0 \quad \text { if } m \neq m^{\prime}
$$

Proof. Statement (a) follows from (3). Now observe that by using polar coordinates we obtain

$$
\left(\tilde{u}_{n, m}^{(\epsilon)}, \tilde{u}_{n^{\prime}, m^{\prime}}^{\left(\epsilon^{\prime}\right)}\right)=\left(\int_{0}^{2 \pi} \epsilon(n \theta) \epsilon^{\prime}\left(n^{\prime} \theta\right) d \theta\right)\left(\int_{0}^{a} J_{n}\left(\sqrt{\lambda_{n, m}} r\right) J_{n^{\prime}}\left(\sqrt{\lambda_{n^{\prime}, m^{\prime}}} r\right) r d r\right)
$$

where ϵ and ϵ^{\prime} are sin or cos (any possible combination). It was shown last quarter that the first integral is equal to 0 unless $\epsilon=\epsilon^{\prime}$ and $n=n^{\prime}$. Assuming this, it follows from (3) that $\tilde{u}_{n, m}^{(\epsilon)}$ and $\tilde{u}_{n, m^{\prime}}^{(\epsilon)}$ are eigenfunctions of $\Delta \tilde{u}=-\lambda \tilde{u}$ with different eigenvalues $\lambda_{n, m}$ and $\lambda_{n, m^{\prime}}$, unless $m=m^{\prime}$. Hence the second integral is equal to 0 for $m \neq m^{\prime}$, by Theorem 1 in Section 10.1. This proves (b) and (c).

In the following $L^{2}(D)$ denotes all measurable functions f on the disk D of radius a for which

$$
\int_{D} f^{2}(x, y) d x d y<\infty
$$

The set of functions $\tilde{u}_{n, m}^{(\nu)}$ being an L^{2}-basis for $L^{2}(D)$ means that for any L^{2} function f on D we can find coefficients $a_{n, m}^{(\nu)}$ such that

$$
\int_{D}\left|f(x, y)-\sum a_{n, m}^{(\nu)} \tilde{u}_{n, m}^{(\nu)}(x, y)\right|^{2} d x d y=0
$$

This means, roughly speaking, that f is not necessarily equal to $\sum a_{n, m}^{(\nu)} \tilde{u}_{n, m}^{(\nu)}$ everywhere, but that the points on which they differ have measure zero. The following theorem uses the fact that the functions $\tilde{u}_{n, m}^{(\nu)}$ form an orthogonal L^{2}-basis for $L^{2}(D)$. This is a known result, which we will not prove in this course.

Theorem The solution of the wave equation, as stated at the beginning of this section, is given by the series

$$
u(r, \theta, t)=\sum_{m, n, \epsilon, \nu} a_{n, m}^{(\epsilon, \nu)} u_{n, m}^{(\epsilon, \nu)}
$$

where $n=0,1,2, \ldots, m=1,2,3, \ldots$ and ϵ, ν are sin or cos. The coefficients are calculated by

$$
\begin{gathered}
a_{n, m}^{(c, \nu)}=\frac{\left(\phi, \tilde{u}_{n, m}^{(\nu)}\right)}{\left(\tilde{u}_{n, m}^{(\nu)}, \tilde{u}_{n, m}^{(\nu)}\right)}, \\
a_{n, m}^{(s, \nu)}=\frac{\left(\psi, \tilde{u}_{n, m}^{(\nu)}\right)}{\sqrt{\lambda_{n, m}} c\left(\tilde{u}_{n, m}^{(\nu)}, \tilde{u}_{n, m}^{(\nu)}\right)} .
\end{gathered}
$$

Proof. This is proved the usual way, checking the initial conditions. Observe that for $t=0$ we have $u_{n, m}^{(s, \nu)}=0$, as $\sin 0=0$, and $u_{n, m}^{(c, \nu)}=\tilde{u}_{n, m}^{(\nu)}$, as $\cos 0=1$. Hence we obtain

$$
\phi(r, \theta)=u(r, \theta, 0)=\sum_{m, n, \nu} a_{n, m}^{(c, \nu)} \tilde{u}_{n, m}^{(\nu)}(r, \theta)
$$

We now obtain the coefficient $a_{n_{o}, m_{o}}^{\left(c, \nu_{o}\right)}$ by taking inner products of both sides with $\tilde{u}_{n_{o}, m_{o}}^{\left(\nu_{o}\right)}$. We similarly obtain the coefficient $a_{n_{o}, m_{o}}^{\left(s, \nu_{o}\right)}$ by differentiating the series expansion for the solution u with respect to t and setting it equal to ψ for $t=0$. By the discussion before this theorem, the ensuing power series satisfies the initial conditions except possibly for a set of measure zero, and it is a solution of the wave equation.

