Instructor: Wenzl
Justify your answers!

1. (a) Prove that $(4 k+2,5 k+3)$ is either 1 or 2 .
(b) Determine all k for which the $g c d$ is equal to 2 .
2. Compute all solutions of $x^{2}+x+1 \equiv 0 \bmod 49$. (No credit if you try all numbers from 1 to 49).
3. (a) Find all solutions of the following Diophantine equation: $65 x-43 y=3$.
(b) Prove or disprove: $\{0,65 \cdot 1,65 \cdot 2, \ldots 65 \cdot 42\}$ is a complete residue system $\bmod 43$.

MATH 104 MIDTERM WINTER 97

Instructor: Wenzl

Justify your answers!

1. (a) Compute $18 \cdot 19 \cdot 20 \ldots 31 \cdot 32 \cdot 33 \bmod 17$.
(b) Compute $4^{44} \bmod 23$.
2. (a) Compute the smallest positive integer n such that $n \equiv 5 \bmod 17$ and $n \equiv 2 \bmod 8$.
(b) Which is the second smallest positive number which satisfies the congruence in (a)?
3. Show that $\sqrt{7}$ is irrational, using uniqueness of prime factorization (partial credit for other methods).
4. Let n be an odd number such that $5 \not \backslash n$. Show that $n^{4}+4^{n}$ is not a prime for $n>1$.
