MIDTERM 2 MATH 103A Winter 2019

1. Let $\alpha=(12345)(14)$. Write α^{1802} as a product of disjoint cycles.

We first have to write α as a product of disjoint cycles. We obtain $\alpha=(15)(234)$. It follows that $\operatorname{ord}(\alpha)=6$ and hence

$$
\alpha^{1802}=\alpha^{1800} \alpha^{2}=(15)^{2}(234)^{2}=(243) .
$$

2. How many elements of order 10 are in S_{7} ?

The only way for an element $\alpha \in S_{7}$ to have order 10 is if it is a disjoint product of a 5 -cycle and a two-cycle. Observe that after we have fixed the 5 -cycle, there is only one choice for the remaining 2 -cycle, using the remaining two numbers. So it suffices to determine how many five cycles we have in S_{7}.

For a given subset of five elements of $\{1,2, \ldots, 7\}$, we have 4 ! different 5 -cycles moving these five numbers (You can freely choose which number you write first - you then have 4! ways how to write the remaining four numbers in the cycle). Hence the number of 5 -cycles is given by

$$
\binom{7}{5} 4!=21 \cdot 24=501
$$

3. Are the groups $U(5)$ and $U(10)$ isomorphic? Prove or disprove it.

We first observe that both groups have order 4 . We check that $U(5)$ is cyclic, with generator 2 : $2^{2}=4,2^{3}=3 \bmod 5$ and $2^{4}=1 \bmod 5$. We similarly check that 3 generates $U(10)$. But any cyclic group of order 4 must be isomorphic to \mathbb{Z}_{4}. Hence $U(5) \cong U(10)$. We could also explicitly check that the map $2 \in U(5) \mapsto 3 \in U(10)$ defines an isomorphism.
4. Write down the cosets of the subgroup $\{1,9\}$ in $U(20)$.

These are $\{1,9\},\{3,7\}=3\{1,9\},\{11,19\}=11\{1,9\}$ and $\{13,17\}=13\{1,9\}$.
5. Let α be an automorphism of \mathbb{Z}.
(a) Is it possible that $\alpha(1)=2$? Either prove that there is an automorphism with this property or give a reason why it can not exist.
(b) Determine all possible automorphisms of \mathbb{Z}.

If $\alpha(1)=2$, then $\alpha(j)=2 j$ is even for all $j \in \mathbb{Z}$. Hence the image of α only contains even numbers. It is not surjective, and hence not an automorphism.

To prove (b), we observe that if $\alpha(1)=k$, then α is completely determined as $\alpha(j)=k j$, and hence $\alpha(\mathbb{Z})=k \mathbb{Z}$. So we see as in (a) that α can only be surjective if $k \in\{ \pm 1\}$. Obviously, the maps $\alpha(j)=j$ and $\alpha(j)=-j$ are injective and they are homomorphisms. So we have exactly two automorphisms of \mathbb{Z}.

