MIDTERM 1 MATH 103A Winter 2019
 SOLUTIONS

1. Find integers s and t such that $1=5 s+13 t$. Show that s and t are not unique.

One solution would be $t=2$ and $s=-5$, which can be easily checked. For any solution s and t, we also get the solution $s+13$ and $t-5$. Indeed we would get

$$
5(s+13)+13(t-5)=5 s+5 \cdot 13+13 t+13 \cdot(-25)=5 s+13 t+65-65=1
$$

2. Calculate $2^{1207} \bmod 15$. Justify your answer.

We have $2^{4}=16=1 \bmod 15$. We have $1207=4 \cdot 301+3$. Hence

$$
2^{1207}=\left(2^{4}\right)^{301} 2^{3}=1^{301} 8=8 \bmod 15 .
$$

3. Consider the group \mathbb{Z}_{24}.
(a) Find all the generators of \mathbb{Z}_{24}.

An element j in \mathbb{Z}_{24} is a generator if and only if its order is 24 . It was shown in class that the order of j is $24 / \operatorname{gcd}(j, 24)$. Hence we have to determine all j for which $\operatorname{gcd}(j, 24)=1$. These are

$$
\{1,5,7,11,13,17,19,23\} .
$$

(a) Find all elements of order 6 in \mathbb{Z}_{24}.

By the same argument as before, we now have to find all j for which $\operatorname{gcd}(j, 24)=24 / 6=4$. These are
(As 4 must divide j, it suffices to check the numbers $4,8,12,16,20$.)
4. Find all subgroups of $U(9)$. Give a reason why the subgroups you have found are all there are.

We have $2^{2}=4,2^{3}=8,2^{4}=16=7 \bmod 9,2^{5}=2 \cdot 7=5 \bmod 9$ and $2^{6}=2 \cdot 5=10=1 \bmod 9$. Hence $\langle 2\rangle=\{1,2,4,5,7,8\}$. These are all elements of $U(9)$ (because $\operatorname{gcd}(3,9)=3=\operatorname{gcd}(6,9)$ and $\operatorname{gcd}(0,9)=9$.) This shows that $U(9)$ is cyclic.

By a theorem in class, there exists exactly one subgroup for each divisor d of $|U(9)|=6$. It is generated by 2^{d}. For $d=1$ and $d=6$ we get the subgroups $U(9)$ and $\{1\}$. For $d=2$, we get the subgroup $\{4,7,1\}$ and for $d=3$ we get $\{8,1\}$.
5. Let G be a cyclic group of order 18 , and let a be a generator of G. What is the order of $\left\langle a^{15}\right\rangle \cap\left\langle a^{10}\right\rangle$? Justify your answer!

We caclulate $\operatorname{gcd}(15,18)=3$ and $\operatorname{gcd}(10,18)=2$. Hence

$$
\begin{gathered}
\left\langle a^{15}\right\rangle=\left\langle a^{3}\right\rangle=\left\{a^{3}, a^{6}, a^{9}, a^{12}, a^{15}, a^{18}=e\right\} \\
\left\langle a^{10}\right\rangle=\left\langle a^{2}\right\rangle=\left\{a^{2}, a^{4}, a^{6}, a^{8}, a^{10}, a^{12}, a^{14}, a^{16}, a^{18}=e\right\}
\end{gathered}
$$

Hence the intersection of these two subgroups is given by $\left\{a^{6}, a^{12}, a^{18}=e\right\}$, i.e. it has order 3 .

