We consider the initial value problem associated with the 3-dimensional wave equation

$$
\begin{equation*}
u_{t t}=c^{2} \Delta u+f(\mathbf{x}, t), \quad u(\mathbf{x}, 0)=0, \quad u_{t}(\mathbf{x}, 0)=0 \tag{*}
\end{equation*}
$$

(a) Let s be fixed and define

$$
v^{(s)}(\mathbf{x}, t)=\frac{1}{4 \pi c^{2} t} \iint_{S} f(\mathbf{x}, s) d S
$$

where S is the sphere given by $|\xi-\mathbf{x}|=c t$. This is a solution of the wave equation $v_{t t}=c^{2} \Delta v$ with which initial conditions?
(b) Show that $u(\mathbf{x}, t)=\int_{0}^{t} v^{(s)}(\mathbf{x}, t-s) d s$ is a solution of $(*)$.
(c) Find the solution of $(*)$ with general initial conditions $u(\mathbf{x}, 0)=\phi(\mathbf{x}), u_{t}(\mathbf{x}, 0)=\psi(\mathbf{x})$. Hint : You can obtain the solution for (c) by adding a solution of the usual wave equation $v_{t t}=c^{2} \Delta v$ with suitable initial conditions to the solution in (b).

