
EIGENVALUES

We fix a domain D ⊂ R3. We consider the eigenvalue problem

−∆u = λu in D, u = 0 on bdy D.

In the following we will denote by F(D) the set of all differentiable functions u in D which satisfy the Dirichlet
boundary condition u = 0 on bdy D; we shall also assume the functions to be real valued for simplicity even
though most of what we do in this chapter can be easily generalized to complex valued functions. We have
shown before that for Dirichlet boundary conditions all the eigenvalues of −∆ are positive, and we list them
as

0 < λ1 ≤ λ2 ≤ λ3 ≤ ...

We have already derived and used Green’s first identity, see Chapter 7, page 179,∫ ∫
bdy D

v
∂u

∂n
dS =

∫ ∫ ∫
D

∇v · ∇u dx +

∫ ∫ ∫
D

v∆u dx,

where ∂u
∂n = ∇u ·n is the directional derivative in direction of the outwards pointing normal vector n on the

boundary of D. We also define, as usual, the inner product and norm for functions u, v on D by

(u, v) =

∫ ∫ ∫
D

u(x)v(x) dx and ‖u‖2 = (u, u),

where we assume the functions to be real valued for simplicity. Then we have, for functions u, v ∈ F(D)
that

(∇u,∇v) = (−∆u, v) = (u,−∆v). (1)

Indeed this follows directly from the definitions and Greens first identity; our boundary conditions ensure
that the left hand side of Greens identity is equal to 0.

We have already constructed an orthogonal set of eigenfunctions of −∆ for the ball of radius a which can
be shown to have the completeness property, or, in other notation, they are an L2-basis (see previous notes
on vibrations of a drumhead).

Theorem 1 Assume that F(D) has an orthogonal L2 basis (vj). Then we have

minu∈F(D)
‖∇u‖2

‖u‖2
= λ1.

P roof. Let u ∈ F(D). By our assumptions, we can write

u(x) =
∑
j

ajvj(x) and −∆u(x) =
∑
j

λjajvj(x).

Using this and (1), we get

(∇u,∇u) = (−∆u, u) = (
∑
j

λjajvj ,
∑
k

akvk) =

=
∑
j,k

λjajak(vj , vk) =
∑
j

λja
2
j‖vj‖2 =

≥
∑
j

λ1a
2
j‖vj‖2 = λ1‖u‖2.
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Hence we have
‖∇u‖2

‖u‖2
≥ λ1 for all u ∈ F(D).

In particular, λ1 must be ≤ the minimum as in the statement. On the other hand, we do have equality
above for u = v1. Indeed, using (1), we have

(∇v1,∇v1) = (−∆v1, v1) = λ1(v1, v1).

This finishes the proof.

As outlined in the lecture as well as in the book (for ` = 1), the same proof also works in the 1-dimensional
setting, with D = [0, `], with Dirichlet boundary condition given by u(0) = 0 = u(`). The inner product is
given by integration over the interval [0, `], and the equalities (1) follow from integration by part. One can
then prove

min
‖∇u‖2

‖u‖2
= min

‖u′‖2

‖u‖2
=

π2

`2
,

using completeness of the set (sin(nπx/`))n along the lines of the proof of Theorem 1.
For more complicated regions D in R3, one usually does not have available an explicit description of

the eigenfunctions and eigenvalues of −∆. One now uses the minimizing property studied so far to find the
eigenvalues of−∆. So in the following theorem we do not assume existence of a complete set of eigenfunctions.

Theorem 2 We have

minu∈F(D)
‖∇u‖2

‖u‖2
= λ1,

the smallest eigenvalue of −∆, provided there exists a function v1 ∈ F(D) such that

‖∇v1‖2 = λ1‖v1‖2.

In this case v1 is an eigenfunction of −∆ with eigenvalue −λ1.

Proof. We first observe that the claim will follow as soon as we can prove

(∆v1 + λ1v1, v) = 0 for all v ∈ F(D). (∗)

Indeed, if we set v = ∆v1 + λ1v1, we have

0 = (∆v1 + λ1v1,∆v1 + λ1v1) =

∫ ∫ ∫
D

(∆v1 + λ1v1)2(x) dx.

Hence ∆v1 + λ1v1 = 0, which proves the claim.
To prove statement (∗), we consider the function

f(ε) =
‖∇(v1 + εv)‖2

‖v1 + εv‖2
,

where v ∈ F(D) arbitrary. Observe that

d

dε
‖v1 + εv‖2 =

d

dε
(v1 + εv, v1 + εv) = 2((v1, v) + ε(v, v)).

Observe that the term with (v, v) disappears for ε = 0. We get a similar expression for d
dε‖∇(v1 + εv)‖2. By

assumption on v1, the function f(ε) has a minimum at ε = 0. Using this and the quotient rule, we get

0 = f ′(0) =
(v1, v1)2(∇v1,∇v)− 2(v1, v)(∇v1,∇v1)

(v1, v1)2
.
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Hence the numerator above has to be equal to 0, from which we deduce

(∇v1,∇v) =
(∇v1,∇v1)

(v1, v1)
(v1, v).

Applying (1) to the left hand side, and the assumption to the right hand side, we get

(−∆v1, v) = λ1(v1, v).

Claim (∗) follows from this.

Corollary Assume we have an orthogonal set v1, v2, ... vm−1 of eigenfunctions of −∆ belonging to the
m − 1 smallest eigenvalues. Let F (m−1)(D) be the set of all functions u ∈ F(D) satisfying (u, vj) = 0,
1 ≤ j ≤ m− 1. Then we have

minu∈F(m)(D)

‖∇u‖2

‖u‖2
= λm,

the m-th smallest eigenvalue of −∆, provided there exists a function vm ∈ F(D)(m) such that

‖∇vm‖2 = λm‖vm‖2.

In this case vm is an eigenfunction of −∆ with eigenvalue −λm.

Proof. Goes the same way as the proof of Theorem 2. You only replace F(D) by F (m)(D) and λ1 by
λm.

Remark The assumption about the existence of minimizing functions v1 (for Theorem 2) and v2, v3 ...
(for its corollary) usually holds for reasonable domains D. But it is not easy to prove, so we will not do
this here. So, at least in principle, this theorem and its corollary could be used to find eigenvalues and
eigenvalues for −∆. We will next show how our results so far motivate some practical approaches to get
good approximations of the eigenvalues.

RAYLEIGH-RITZ APPROXIMATION

We now would like to use the theoretical results above to get good estimates for the lowest eigenval-
ues of −∆. A very primitive approach would be to randomly select n functions w1, w2, ... wn, calculate
‖∇wj‖2/‖w‖2 for j = 1, 2, ... n and pick the lowest value. We would need a lot of intuition and luck to
get good estimates this way. Instead, we will now study a method which would calculate the minimum of
‖∇u‖2/‖u‖2 for all functions u in the linear span of the functions w1 until wn. This is just a problem in
linear algebra, which can be stated as follows:

Lemma 3 Let W be a finite dimensional vector space (say W = Rn) with inner product ( , ), and let
w1, w2, ... wn be linearly independent vectors in W . Moreover, let D : W → W be a linear map satisfying
(Dw, w̃) = (w,Dw̃) for all w, w̃ ∈W . Then the eigenvalues of D are the roots of det(A− λB), where A and
B are given by aij = (Dwi, wj) and bij = (wi, wj). In particular, the minimum of (Dw,w)/(w,w) is given
by the smallest eigenvalue λ1 of D, and the maximum of (Dw,w)/(w,w) is given by the largest eigenvalue
of D.

Proof. Let vk =
∑
ciwi be an eigenvector of D with eigenvalue λk. Plugging this into (Dvk, wj) =

(λkvk, wj) gives us ∑
i

aijci =
∑
i

λkbijci,

for j = 1, 2, ... n. Denoting by c the row vector (c1, c2, ... cn), this can be rewritten in matrix form as

c(A− λkB) = 0.
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It follows that det(A− λkB) = 0, i.e. λk is a root of the polynomial det(A− λB). To prove the statement
about the minimum, recall that the eigenvectors of D belonging to different eigenvalues are orthogonal. Here
is the one-line proof again for eigenvectors vi and vj :

λi(vi, vj) = (λivi, vj) = (Dvi, vj) = (vi, Dvj) = λj(vi, vj).

Hence if λi 6= λj , the equality above can only hold if (vi, vj) = 0. One can deduce from this that D has an
orthogonal basis (vi) of eigenvectors. The same argument as in the proof of Theorem 1 now shows the last
statement, that (Dw,w) ≥ λ1(w,w) for all w ∈W . Similarly, using this line of arguments and the inequality∑

j

λja
2
j‖vj‖2 ≤ λn

∑
j

a2j‖vj‖2,

one also proves that (Dw,w) ≤ λn(w,w), with equality reached for w = vn.

Theorem 4 (Rayleigh-Ritz approximation). Let w1, w2, ... wn be n linearly independent vectors in
F(D), and let A and B be the n× n matrices defined by

aij = (−∆wi, wj), bij = (wi, wj).

Denote by λ
(n)
1 ≤ λ

(n)
2 ≤ ... λ

(n)
n the roots of the polynomial det(A − λB). Then λ

(n)
i → λi, the i-th

eigenvalue of −∆ if n→∞.

Sketch of proof. This follows essentially from Lemma 3, which we apply to the following situation:
The vector space W is given by the span of the functions w1, w2 ... wn. Let P be the orthogonal projection
onto this subspace with respect to our inner product on F(D), and let D = P (−∆)P : W → W. Then all
the assumptions of Lemma 3 are satisfied, using Eq (1). It is now possible to make the following informal
statement mathematically rigorous: The more functions we use to construct the subspace W , the closer the

operator P (−∆)P approximates the operator −∆. In particular, the i-th lowest eigenvalue λ
(n)
i of P (−∆)P

will approximate the eigenvalue λi of −∆.

We now discuss another way how to characterize the n-th eigenvalue λn of −∆. Let again W be the linear
span of n linearly independent functions w1, w2, ... wn in F(D). Let λ∗n = λ∗n(W ) be the largest eigenvalue
of P (−∆)P , where P is the projection onto W as in the last theorem. Then it follows from Lemma 1, by
the exactly same reasoning as in the last theorem that

λ∗n(W ) = max{‖∇w‖
2

‖w‖2
, w ∈W}.

Example See Example 2 on p. 306 in the book. There we have for D the disk of radius 1. For simplicity,
we only consider radially invariant functions, i.e. functions which are independent of θ in polar coordinates.
Then we have

−∆u = −urr −
1

r
ur = −1

r
(rur)r.

We then get, using polar coordinates and integration by parts,∫ ∫
|∇u|2dxdy =

∫ 1

0

∫ 2π

0

(−1

r
(rur)r)u rdθdr = 2π[(−ruru)|r=1

r=0 +

∫ 1

0

ru2r dr].

As u(1) = 0 by Dirichlet boundary condition, the first term on the right hand side disappears. So we get

‖∇u‖2

‖u‖2
=

∫ ∫
−u∆u dxdy∫ ∫
|u|2 dxdy

=

∫ 1

0
ru2r dr∫ 1

0
ru2 dr

.
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We take as trial functions w1 = 1 − r2 and w2 = (1 − r2)2. Doing the integrations for these functions, see
the book, we get the matrices

A = 2π

[
1 2

3
2
3

2
3

]
and B = 2π

[
1
6

1
8

1
8

1
10

]
.

Then one checks (see p. 206) that det(A − λB) has the eigenvalues approximately equal to 5.784 and
36.9. The true eigenvalues are given by the squares of the roots of the Bessel function J0 which would be
approximately 5.783 = z21 ∼ (2.405)2 and 30.5.

Theorem 5 (Minimax Principle) The n-th eigenvalue λn of −∆ is given by

λn = min λ∗n(W ),

where W ranges over all possible n dimensional subspaces of F(D), i.e. over all possible spans of n linearly
independent functions in F(D).

Proof. Pick any n linearly independent functions w1, w2, ... wn. Then we can find a nonzero linear
combination 0 6= w =

∑
cjwj such that w is orthogonal to the first (n − 1) eigenfunctions of −∆. Indeed,

this is equivalent to

(w, vk) =
∑
j

(wj , vk)cj = 0, 1 ≤ k ≤ n− 1.

This is a homogeneous linear system of n− 1 equations with n unknowns; hence it has a nontrivial solution
for c1, c2, ... cn which shows the existence of a vector w as stated above. But then it follows from the
corollary of Theorem 2 that (−∆w,w) ≥ λn(w,w). Hence also λ∗n(W ) ≥ λn. As W was the span of an
arbitrary linear combination of n linearly independent functions, it also follows that the minimum of all
possible λ∗n(W ) must be ≥ λn.

To show that the minimum actually is equal to λn we take for W the span of the first n eigenfunctions
v1, v2, ... vn of −∆. If w =

∑
ckvk is a function in W , then we have

(−∆w,w) =
∑
k,m

(−∆ckvk, cmvm) =
∑
k,m

λkckcm(vk, vm) =

=
∑
k

λkc
2
k(vk, vk) ≤ λn

∑
k

c2k(vk, vk) = λn(w,w).

Hence the maximum of (−∆w,w)/((w,w) is ≤ λn. On the other hand, we have (−∆vn, vn) = λn(vn, vn),
i.e. the maximum is indeed equal to λn. Hence we have λn = λ∗n(W ) for our choice of W .
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