Continuous, integrable and differentiable functions Recall that $f:[a, b] \rightarrow \mathbf{R}$ is called continuous at x_{0} if for every $\epsilon>0$ there exists a $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ if $|x-y|<\delta$.
We have the implications f differentiable $\Rightarrow f$ continuous $\Rightarrow f$ integrable.
Fundamental Theorems of Calculus (a) Assume that F is differentiable on (a, b) and continuous on $[a, b]$ such that also $F^{\prime}(x)$ is continuous on $[a, b]$. Then

$$
\int_{a}^{b} F^{\prime}(x)=F(b)-F(a)
$$

(b) Assume $f:[a, b] \rightarrow \mathbf{R}$ is continuous. Then

$$
\frac{d}{d x}\left[\int_{a}^{x} f\right]=f(x), \quad \frac{d}{d x}\left[\int_{x}^{b} f\right]=-f(x)
$$

You are allowed to use integration by parts, if convenient.
Identity Criterion If I is an interval and $f, g: I \rightarrow \mathbf{R}$ are two differentiable functions satisfying $f^{\prime}(x)=$ $g^{\prime}(x)$ for all $x \in I$, then there exists a constant c such that $f(x)=g(x)+c$ for all $x \in I$.
Taylor polynomials and approximations Let I be an open interval and let $f: I \rightarrow \mathbf{R}$ be a function with n derivatives. Then its n-th Taylor polynomial p_{n} at $x_{0} \in I$ is defined to be

$$
p_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} .
$$

Lagrange Remainder Theorem Assume $f: I \rightarrow \mathbf{R}$ has $n+1$ derivatives. Let $x_{0}, x \in I$. Then there exists a number c between x_{0} and x such that

$$
f(x)-p_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

Lemma (a) Let c be a constant. Then we have

$$
\lim _{n \rightarrow \infty} \frac{c^{n}}{n!}=0
$$

(b) Let $\left(c_{n}\right)$ be a sequence such that $\lim _{n \rightarrow \infty} \frac{\left|c_{n+1}\right|}{\left|c_{n}\right|}=r$.
(i) If $r<1$, then $\lim _{n \rightarrow \infty} c_{n}=0$
(ii) If $r>1$, then $\left(c_{n}\right)$ is an unbounded sequence.

Examples of Taylor series (a) If $|x|<1$, we have

$$
\ln (1+x)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{k}}{k}
$$

(b) Let $\beta \in \mathbf{R}$ and let $|x|<1$. Then

$$
(1+x)^{\beta}=\sum_{k=0}^{\infty}\binom{\beta}{k} x^{k}
$$

Theorem Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the function defined by

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Then $f^{(k)}(0)=0$ for all $k \in \mathbf{N}$, and f has derivatives of all orders for all $x \in \mathbf{R}$.

