OFFICIAL 'CHEAT SHEET' FOR MIDTERM I

Darboux sums and partitions Let $f:[a,b] \to \mathbf{R}$ be a bounded function. For a partition $P = \{x_0 = x_0 \}$ $a, x_1, ..., x_n = b$, where $x_i < x_i + 1$ for $0 \le i < n$, we have the upper and lower Darboux sums

$$U(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$
 and $L(f, P) = \sum_{i=1}^{n} m_i(x_i - x_{i-1});$

here m_i and M_i are infimum and supremum of f on the interval $[x_{i-1}, x_i]$. A refinement P^* of P is a partition of the same interval which contains all the points of P.

Lemma (a) If there are numbers m, M such that $m \leq f(x) \leq M$ for all $x \in [a, b]$, then $m(b-a) \leq L(f, P)$ and $U(f, P) \leq M(b-a)$ for any partition P of [a, b].

(b) (Refinement lemma) If P^* is a refinement of P, then $L(f, P) \leq L(f, P^*)$ and $U(f, P^*) \leq U(f, P)$.

Definition of integral We define the upper and lower integrals by

$$\int_{a}^{\bar{b}} f = \inf U(f, P), \quad \int_{\bar{a}}^{b} f = \sup L(f, P).$$

where the inf and sup are taken over all partitions of [a, b]. A bounded function is called *integrable* if upper and lower integrals coincide.

Theorem (a) The lower integral of f is always less or equal than the upper integral.

(b) (Archimedes-Riemann) A bounded function $f:[a,b] \to \mathbf{R}$ is integrable if and only if there exists a sequence of partitions (P_n) such that

$$\lim_{n \to \infty} [U(f, P_n) - L(f, P_n)] = 0.$$

Properties of integrals Let $f, g: [a, b] \to \mathbf{R}$ be integrable functions. Then we have

- (a) $\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$, for a < c < b, (b) If $f(x) \le g(x)$ for all $x \in [a, b]$, then $\int_{a}^{b} f \le \int_{a}^{b} g$, (c) If α and β are numbers, then $\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$.

Continuous functions Recall that $f:[a,b] \to \mathbf{R}$ is called continuous at x_0 if for every $\epsilon > 0$ there exists a $\delta > 0$ such that $|f(x) - f(x_0)| < \epsilon$ if $|x - y| < \delta$.

Theorem (a) All continuous functions are integrable.

(b) Let $f:[a,b] \to \mathbf{R}$ be a function which is continuous and bounded on (a,b). Then f is integrable, and the value of the integral $\int_a^b f$ does not depend on the values of f at a and b.