OFFICIAL 'CHEAT SHEET'

Darboux sums and partitions Let $f:[a, b] \rightarrow \mathbf{R}$ be a bounded function. For a partition $P=\left\{x_{0}=\right.$ $\left.a, x_{1}, \ldots, x_{n}=b\right\}$, where $x_{i}<x_{i}+1$ for $0 \leq i<n$, we have the upper and lower Darboux sums

$$
U(f, P)=\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right) \quad \text { and } \quad L(f, P)=\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right)
$$

here m_{i} and M_{i} are infimum and supremum of f on the interval $\left[x_{i-1}, x_{i}\right]$.
Definition of integral We define the upper and lower integrals by

$$
\int_{a}^{\bar{b}} f=\inf U(f, P), \quad \int_{\bar{a}}^{b} f=\sup L(f, P)
$$

where the inf and sup are taken over all partitions of $[a, b]$. A bounded function is called integrable if upper and lower integrals coincide.
Theorem (a) The lower integral of f is always less or equal than the upper integral.
(b) (Archimedes-Riemann) A bounded function $f:[a, b] \rightarrow \mathbf{R}$ is integrable if and only if there exists a sequence of partitions $\left(P_{n}\right)$ such that

$$
\lim _{n \rightarrow \infty}\left[U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right]=0
$$

Continuous, integrable and differentiable functions Recall that $f:[a, b] \rightarrow \mathbf{R}$ is called continuous at x_{0} if for every $\epsilon>0$ there exists a $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ if $|x-y|<\delta$.
Theorem (a) Every continuous function is integrable
(b) Assume $f:[a, b] \rightarrow \mathbf{R}$ is continuous and $f(x) \geq 0$ for all $x \in[a, b]$. If there exists $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)>0$, then $\int_{a}^{b} f>0$
We have the implications f differentiable $\Rightarrow f$ continuous $\Rightarrow f$ integrable.
Fundamental Theorems of Calculus (a) Assume that F is differentiable on (a, b) and continuous on $[a, b]$ such that also $F^{\prime}(x)$ is continuous on $[a, b]$. Then

$$
\int_{a}^{b} F^{\prime}(x)=F(b)-F(a)
$$

(b) Assume $f:[a, b] \rightarrow \mathbf{R}$ is continuous. Then

$$
\frac{d}{d x}\left[\int_{a}^{x} f\right]=f(x), \quad \frac{d}{d x}\left[\int_{x}^{b} f\right]=-f(x)
$$

Taylor polynomials and approximations Let I be an open interval and let $f: I \rightarrow \mathbf{R}$ be a function with n derivatives. Then its n-th Taylor polynomial p_{n} at $x_{0} \in I$ is defined to be

$$
p_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} .
$$

The function f is given by its Taylor series at x, i.e. $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}$, if $f(x)=\lim _{n \rightarrow \infty} p_{n}(x)$.
Lagrange Remainder Theorem Assume $f: I \rightarrow \mathbf{R}$ has $n+1$ derivatives. Let $x_{0}, x \in I$. Then there exists a number c between x_{0} and x such that

$$
f(x)-p_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

Lemma (a) Let c be a constant. Then we have

$$
\lim _{n \rightarrow \infty} \frac{c^{n}}{n!}=0
$$

(b) Let $\left(c_{n}\right)$ be a sequence such that $\lim _{n \rightarrow \infty} \frac{\left|c_{n+1}\right|}{\left|c_{n}\right|}=r$.
(i) If $r<1$, then $\lim _{n \rightarrow \infty} c_{n}=0$
(ii) If $r>1$, then $\left(c_{n}\right)$ is an unbounded sequence.

Weierstrass Approximation Theorem Let $f:[a, b] \rightarrow \mathbf{R}$ be a continuous function, and let $\epsilon>0$. Then there exists a polynomial p such that $|p(x)-f(x)|<\epsilon$ for all $x \in[a, b]$.

Pointwise and uniform convergence Let $f_{n}: D \rightarrow \mathbf{R}$ be a sequence of function, and let $f: D \rightarrow \mathbf{R}$.
(a) The sequence $\left(f_{n}\right)$ converges to f pointwise if $\lim f_{n}(x)=f(x)$ for all $x \in[a, b]$.
(b) The sequence $\left(f_{n}\right)$ converges to f uniformly if for every $\epsilon>0$ we can find an N such that $\mid f_{n}(x)-$ $f(x) \mid<\epsilon$ for all $x \in[a, b]$ and all $n \geq N$.
Theorem Assume $f_{n} \rightarrow f$ uniformly, and $D=[a, b]$.
(a) If all f_{n} s are continuous, then so is f.
(b) If all f_{n} s are integrable, then so is f. Moreover, in this case $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}=\int_{a}^{b} f$.
(c) Assume all f_{n} 's are differentiable. If the $f_{n}^{\prime} s$ converge uniformly to a function g, and the functions f_{n} converge pointwise to the function f, then f is differentiable and $f^{\prime}=g=\lim _{n \rightarrow \infty} f_{n}^{\prime}$.

Theorem Assume for some $r>0$ the function $f:(-r, r) \rightarrow \mathbf{R}$ is given by the power series

$$
f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}, \quad \text { if }|x|<r
$$

Then f has derivatives of all orders. In particular

$$
f^{\prime}(c)=\sum_{k=0}^{\infty} k c_{k} x^{k-1}, \quad \text { if }|x|<r
$$

