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Darboux sums and partitions Let f : [a, b]→ R be a bounded function. For a partition P = {x0 =
a, x1, ..., xn = b}, where xi < xi + 1 for 0 ≤ i < n, we have the upper and lower Darboux sums

U(f, P ) =

n∑
i=1

Mi(xi − xi−1) and L(f, P ) =

n∑
i=1

mi(xi − xi−1);

here mi and Mi are infimum and supremum of f on the interval [xi−1, xi].

Definition of integral We define the upper and lower integrals by∫ b̄

a

f = inf U(f, P ),

∫ b

ā

f = sup L(f, P ),

where the inf and sup are taken over all partitions of [a, b]. A bounded function is called integrable if upper
and lower integrals coincide.

Theorem (a) The lower integral of f is always less or equal than the upper integral.
(b) (Archimedes-Riemann) A bounded function f : [a, b]→ R is integrable if and only if there exists a

sequence of partitions (Pn) such that

lim
n→∞

[U(f, Pn)− L(f, Pn)] = 0.

Continuous, integrable and differentiable functions Recall that f : [a, b]→ R is called continuous at
x0 if for every ε > 0 there exists a δ > 0 such that |f(x)− f(x0)| < ε if |x− y| < δ.

Theorem (a) Every continuous function is integrable
(b) Assume f : [a, b] → R is continuous and f(x) ≥ 0 for all x ∈ [a, b]. If there exists x0 ∈ [a, b] such

that f(x0) > 0, then
∫ b

a
f > 0

We have the implications f differentiable ⇒ f continuous ⇒ f integrable.

Fundamental Theorems of Calculus (a) Assume that F is differentiable on (a, b) and continuous on
[a, b] such that also F ′(x) is continuous on [a, b]. Then∫ b

a

F ′(x) = F (b)− F (a).

(b) Assume f : [a, b]→ R is continuous. Then

d

dx

[∫ x

a

f

]
= f(x),

d

dx

[∫ b

x

f

]
= −f(x).

Taylor polynomials and approximations Let I be an open interval and let f : I → R be a function
with n derivatives. Then its n-th Taylor polynomial pn at x0 ∈ I is defined to be

pn(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k.

The function f is given by its Taylor series at x, i.e. f(x) =
∑∞

k=0
f(k)(x0)

k! (x−x0)k, if f(x) = limn→∞ pn(x).

Lagrange Remainder Theorem Assume f : I → R has n + 1 derivatives. Let x0, x ∈ I. Then there
exists a number c between x0 and x such that

f(x)− pn(x) =
f (n+1)(c)

(n+ 1)!
(x− x0)n+1.



Lemma (a) Let c be a constant. Then we have

lim
n→∞

cn

n!
= 0.

(b) Let (cn) be a sequence such that limn→∞
|cn+1|
|cn| = r.

(i) If r < 1, then limn→∞ cn = 0
(ii) If r > 1, then (cn) is an unbounded sequence.

Weierstrass Approximation Theorem Let f : [a, b]→ R be a continuous function, and let ε > 0. Then
there exists a polynomial p such that |p(x)− f(x)| < ε for all x ∈ [a, b].

Pointwise and uniform convergence Let fn : D → R be a sequence of function, and let f : D → R.
(a) The sequence (fn) converges to f pointwise if lim fn(x) = f(x) for all x ∈ [a, b].
(b) The sequence (fn) converges to f uniformly if for every ε > 0 we can find an N such that |fn(x)−

f(x)| < ε for all x ∈ [a, b] and all n ≥ N .

Theorem Assume fn → f uniformly, and D = [a, b].
(a) If all fns are continuous, then so is f .

(b) If all fns are integrable, then so is f . Moreover, in this case limn→∞
∫ b

a
fn =

∫ b

a
f .

(c) Assume all fn’s are differentiable. If the f ′ns converge uniformly to a function g, and the functions
fn converge pointwise to the function f , then f is differentiable and f ′ = g = limn→∞ f ′n.

Theorem Assume for some r > 0 the function f : (−r, r)→ R is given by the power series

f(x) =

∞∑
k=0

ckx
k, if |x| < r.

Then f has derivatives of all orders. In particular

f ′(c) =

∞∑
k=0

kckx
k−1, if |x| < r.


