PRACTICE PROBLEMS MIDTERM II

1. Assume that $f: \mathbf{R} \rightarrow \mathbf{R}$ has three derivatives and define

$$
F(x)=f(0)+f^{\prime}(0) x+\int_{0}^{x}(x-t) f^{\prime \prime}(t) d t
$$

for all x.
(a) Show that $F^{\prime}(x)=f^{\prime}(x)$ (Hint: You can pull out x from the integral - do NOT use the Cauchy integral remainder theorem)
(b) Use part (a) and the Identity Criterion (see book, page 117) to show that $F(x)=$ $f(x)$ for all x.
2. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function which has three derivatives. Assume that $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=1$. Prove that $x_{0}=0$ is a local minimizer, i.e. there exists a $\delta>0$ such that $f(x)>f(0)$ if $|x-0|<\delta$.
3. Assume that $f: \mathbf{R} \rightarrow \mathbf{R}$ has derivatives of all orders such that

$$
\left|f^{(k)}(x)\right| \leq k!\quad \text { for all } x \in(-1,1), k \in \mathbf{N} .
$$

Prove that $f(x)$ is given by its Taylor series for all $x \in(-1,1)$, i.e.

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k} \quad \text { for all } x \in(-1,1)
$$

4. Do the following problems: Section 8.2: 1, Section 8.3: 1. Review homework problems.
