Useful calculation:
\[(\sin \frac{m\pi}{L} x, \sin \frac{n\pi}{L} x) = \int_0^L \sin \frac{m\pi}{L} x \sin \frac{n\pi}{L} x \, dx \]

This can be solved using trig identity:
\[\sin x \sin y = \frac{1}{2} (\cos(x-y) - \cos(x+y)) \]

You can derive this for yourself using:
\[\sin x = \frac{1}{2i} (e^{ix} - e^{-ix}), \quad \cos x = \frac{1}{2} (e^{ix} + e^{-ix}) \]

\[= \frac{1}{2} \int_0^L \cos \frac{(m-n)\pi}{L} x - \cos \frac{(m+n)\pi}{L} x \, dx \]

\[= \frac{1}{2} \left[\frac{L}{(m-n)\pi} \sin \frac{(m-n)\pi}{L} x - \frac{L}{(n+m)\pi} \sin \frac{(n+m)\pi}{L} x \right]_0^L \]

\[= \frac{1}{2} \left[\frac{L}{(m-n)\pi} \sin \frac{(m-n)\pi}{L} L - \frac{L}{(n+m)\pi} \sin \frac{(n+m)\pi}{L} L \right] \]

\[\text{except if } n = m \text{ by calculations on next page} \]
Last class:
\[
\int_{0}^{L} \sin \frac{m\pi}{L} x \sin \frac{n\pi}{L} x \, dx = \begin{cases}
L/2 & \text{if } n=m \\
0 & \text{if } n \neq m
\end{cases}
\]

Recall: we defined \((f, g) = \int_{0}^{L} f(x)g(x) \, dx \)

\[
\Rightarrow (\sin \frac{m\pi}{L} x, \sin \frac{n\pi}{L} x) = \begin{cases}
L/2 & \text{if } n=m \\
0 & \text{if } n \neq m
\end{cases}
\]

Recall from linear algebra:
If \(a_1, a_2, \ldots, a_d \) in \(\mathbb{R}^d \) nonzero vectors
s.t. \((u_n, u_m) = u_n \cdot u_m = 0 \) for \(n \neq m \)
and \(v \in \mathbb{R}^d \)

\[
\Rightarrow v = \sum_{n=1}^{d} b_n u_n \quad \text{where} \quad b_n = \frac{(v, u_n)}{(u_n, u_n)}
\]
Same formula works for infinite dim. vector spaces here: \(V = \) all integrable functions on interval \([0, L]\)

\[u_n = \sin \frac{n\pi}{L} x \]

Theorem: Let \(f \) be continuous function on \([0, L]\), \(f(0) = f(L) \).

\[f(x) = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi}{L} x \]

where \(B_n = \frac{2}{L} \int f(x) \sin \frac{n\pi}{L} x \, dx \)

\[\frac{2}{L} = \langle u_n, u_n \rangle \]

Remark: theorem also works for not necessarily continuous function.
This was last missing piece for solving

(PDE) \[\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2} \]

(BC) \[u(0, t) = 0 = u(L, t) \]

(IC) \[u(x, 0) = f(x) \quad \text{given function } f \]
Strategy to solve:

1. Calculate product solutions \(u(x,t) = G(t)\Phi(x) \)

2. Separate variables

\[
\frac{G'(t)}{kG(t)} = \frac{\Phi''(x)}{\Phi(x)} = -\lambda
\]

3. Solve two ODE's

\[G'(t) = -\lambda k G(t) \]

and \[\Phi''(x) = -\lambda \Phi(x) \]

4. Use boundary conditions to determine possible values of \(\lambda \) (in our example \(\lambda = \frac{n^2\pi^2}{L^2} \))

Def. \(\lambda \) is called an eigenvalue of our PDE with given boundary conditions.
For each eigenvalue λ find corresponding solution $\phi_\lambda(x)$ of ODE $\phi''(x) = -\lambda \phi(x)$

(in our example: $\lambda = \frac{n^2 \pi^2}{L^2}$

$\phi_\lambda = \sin \frac{n \pi}{L} x$)

(b) Find Fourier expansion of $f(x)$ in terms of eigenfunctions ϕ_λ

(in our example: $f(x) = \sum_{n=1}^{\infty} B_n \sin \frac{n \pi}{L} x$

where $B_n = \frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi}{L} x dx$)

(c) Solution: $u(x,t) = \sum_{n=1}^{\infty} B_n \sin \frac{n \pi}{L} x e^{-(\frac{n \pi}{L})^2 \alpha t}$
Concrete example:
\[f(x) = 100 \quad \text{for} \quad 0 < x < 100 \]
\[f(0) = 0 = f(100) \]

Solution: have already shown:

\[\text{can expand} \quad f(x) = \sum B_n \sin \frac{n\pi x}{L} \]

\[\Rightarrow \text{get solution} \]
\[u(x, t) = \sum B_n \sin \frac{n\pi x}{L} \times e^{-\left(\frac{(n\pi)^2}{L^2}\right) t} \]

only thing left: calculate coefficients \(B_n \)
\[B_n = \frac{2}{L} \int_{0}^{L} 100 \cdot \sin \frac{m \pi x}{L} \cdot f(x) \, dx \]

\[= \frac{200}{m \pi} \left[-\cos \frac{m \pi x}{L} \right]_{0}^{L} \]

\[= \frac{200}{m \pi} \left(-\cos \frac{m \pi L}{L} + \cos \frac{m \pi 0}{L} \right) \]

\[= \frac{200}{m \pi} \left(1 - \cos \frac{m \pi L}{L} \right) = \frac{200}{m \pi} \left(1 - (-1)^n \right) \]

\[= \left\{ \begin{array}{ll}
\frac{400}{m \pi} & n \text{ odd} \\
0 & n \text{ even}
\end{array} \right. \]
\(u(x,t) \approx \frac{400}{\pi} \sin \left(\frac{\pi}{L} x \right) e^{-\left(\frac{\pi}{L} \right)^2 \pi t} \)

See picture in book.

Max. amplitude at time \(t = \frac{\pi}{11} e^{-\left(\frac{\pi}{L} \right)^2 \pi t} \) reached at \(x = \frac{L}{2} \)

Precise description of cooling off of a rod with initial temperature 100\(^\circ\) with constant boundary temp 0\(^\circ\).