Last class:

- Found out that differentiating sine series for \(x = f(t) \) → got a non-converging cosine series ≠ cosine series of \(\frac{d}{dx}(x) = 1 \)

Clarification for this fact:

Theorem: \(f: [a, b] \rightarrow \mathbb{R} \) (\(f \) continuous) ⇒ \(f'(x) \) piecewise smooth ⇒ \(f(x) \) has Fourier series which converges.

- Differentiating sine series for \(f \) term by term ⇒ get cosine series for \(f' \) only if \(f(a) = f(b) = 0 \)
- Differentiating cosine series for \(f \) term by term ⇒ get sine series for \(f' \)
Proof for \(a \)

given sine series of \(f \)

\[f(x) \sim \sum_{n=1}^{\infty} B_n \sin \frac{n\pi x}{L} \]

Differentiate sine series term by term:

\[\Rightarrow \sum_{n=1}^{\infty} B_n \frac{n\pi}{L} \cos \frac{n\pi x}{L} \]

Let \(f'(x) \sim \sum_{n=0}^{\infty} A_n \cos \frac{n\pi x}{L} \)

Cosine series for \(f' \)

Question: Are these two series the same?

\[(\Rightarrow) \]

\[A_0 = 0 \]

\[A_n = \frac{B_n n\pi}{L} \quad n > 0 \]
Calculate the \(A_n \)'s!

\[
A_0 = \frac{2}{L} \int_0^L f'(x) \, dx
\]

\[
= \frac{2}{L} \left(f(L) - f(0) \right) = 0
\]

\(n > 0 \)

\[
A_n = \frac{1}{L} \int_0^L f'(x) \cos \frac{n\pi x}{L} \, dx
\]

\[
= \frac{1}{L} \left[f(x) \cos \frac{n\pi x}{L} \bigg|_0^L + \int_0^L f(x) \left(-\frac{n\pi}{L} \sin \frac{n\pi x}{L} \right) \, dx \right]
\]

int. by parts

\[
= \frac{1}{L} \left[f(L) \cos \frac{n\pi L}{L} - f(0) + \int_0^L f(x) \frac{n\pi}{L} \sin \frac{n\pi x}{L} \, dx \right]
\]

\[
= \frac{1}{L} \left[f(L) \cos \frac{n\pi L}{L} - f(0) + (-1)^m \int_0^L f(x) \frac{n\pi}{L} \sin \frac{n\pi x}{L} \, dx \right]
\]
\[\frac{1}{L} \left[(-1)^{n+1} f(L) - f(0) \right] + \frac{\pi n}{L} \int_0^L f(x) \sin \frac{\pi n x}{L} \, dx \]

\[\frac{1}{L} \left[(-1)^{n+1} f(L) - f(0) \right] + \frac{\pi n}{L} B_n \]

\text{Result: Coefficient } A_n \text{ of cosine series of } f' \]

\[A_n = \frac{\pi n}{L} B_n \quad \Rightarrow \quad f(L) = 0 = f(0) \]

\[(-1)^n f(L) - f(0) = 0 \text{ both for } n \text{ odd} \]

and for \(n \) even

\[(-1)^n f(L) - f(0) = 0 \]

\text{bad news: need to be careful if } f(0) \text{ to } a \text{ or } f(L) \to 0 \]

\text{good news: even if } f(0) \to a \text{ or } f(L) \to 0 \text{ we can calculate cosine series of } f' \text{ from sine series of } f \text{ via here: } f \text{ needs to be continuous on } [0, L] \]
Remark: Integrating Fourier series term by term is less complicated.

If F is an antiderivative of f, we can obtain its Fourier series from the one of F always by integrating term by term up to a constant.
4. Wave Equation

1-dim wave equation.

physical set-up.

string spanned between

assumptions:

- string segments only move in vertical direction
- \(u(x,t) \) = position of string segment at \(x \) at time \(t \) in vertical

- \(\rho_0(x) \) = mass density at \(x \) (usually constant)

- Newton's law: \(F = ma \) (force = mass \(\times \) acceleration)
- string perfectly flexible
 - tension forces always going in direction of tangent

\[u \]

\[x \quad x + \Delta x \]

vertical component

\[\sin \theta T(x,t) \]

relevant part of tension force

\[\sin \theta = \text{slope at } x = \frac{\partial u}{\partial x}(x,t) \]

determine force on line segment between \(x \) and \(x + \Delta x \)

\[T(x,t) \frac{\partial u}{\partial x}(x,t) \]
\[F = m \alpha \]

\[= s_0(x) \Delta x \frac{\partial^2 u}{\partial t^2} \]

\[= m \]

\[= \alpha \]

= forces from tension + exterior forces (e.g., gravity)

act on endpoints of line segment

\[= \frac{\partial u}{\partial x}(x+\Delta x,t) \Pi(x+\Delta x,t) - \frac{\partial u}{\partial x}(x,t) \Pi(x,t) \]

\[+ s_0(x) \Delta x \frac{\partial^2 u}{\partial x^2} \quad \text{mass} \quad \text{exterior force} \]

\[\text{get} \]

\[s_0(x) \Delta x \frac{\partial^2 u}{\partial t^2} = \]