BESSEL FUNCTIONS

Here we collect a number of useful properties of Bessel functions. Using its power series expansion

$$
J_{s}(z)=\sum_{j=0}^{\infty} \frac{1}{\Gamma(j+1) \Gamma(j+s+1)}\left(\frac{z}{2}\right)^{s+2 j}
$$

one can prove (see homework) that

$$
\begin{equation*}
J_{s \pm 1}(z)=\frac{s}{z} J_{s}(z) \mp J_{s}^{\prime}(z) . \tag{1}
\end{equation*}
$$

We have shown the following result in class.

Lemma 1 With the definitions above, we have
(a) $\int_{0}^{a} J_{s}(z)^{2} z d z=\frac{1}{2}\left[a^{2} J_{s}^{\prime}(a)^{2}+\left(a^{2}-s^{2}\right) J_{s}(a)^{2}\right]$,
(b) If $J_{s}(\beta a)=0$, then

$$
\int_{0}^{a} J_{s}(\beta r)^{2} r d r=\frac{1}{2} a^{2} J_{s}^{\prime}(\beta a)^{2}=a^{2} J_{s \pm 1}(\beta a)^{2}
$$

(c) $\left(\tilde{u}_{n, m}^{(\nu)}, \tilde{u}_{n, m}^{(\nu)}\right)=\frac{\pi}{2} a^{2} J_{s \pm 1}\left(\sqrt{\lambda_{n, m}} a\right)^{2}$.

Proof. For the proofs of (a) and (b), see p 284, Normalizing Constants in Chapter 10.5 of our book. For part (c) we use the definition of $\tilde{u}_{n, m}^{(\nu)}$ and of the inner product $\left(\tilde{u}_{n, m}^{(\nu)}, \tilde{u}_{n, m}^{(\nu)}\right)$, see the proof of the first theorem in the previous notes on vibrations of a drumhead. It then suffices to apply part (b) to the integral, with $\beta=\sqrt{\lambda_{n, m}}$.

We shall also need Bessel functions J_{s} with $s=n+\frac{1}{2}$ a half-integer. Using the substitution $u=z^{-1 / 2} v$, it is shown in a homework problem that Bessel's equation transforms to

$$
v^{\prime \prime}+\left(1-\frac{s^{2}-\frac{1}{4}}{z^{2}}\right) v=0
$$

It follows that for $s=\frac{1}{2}$ we get the differential equation $v^{\prime \prime}+v=0$. As we also want a finite value for $u(z)=z^{-1 / 2} v(z)$ for $z \rightarrow 0$, we obtain the solution

$$
J_{1 / 2}(z)=\sqrt{\frac{2}{\pi z}} \sin z
$$

where the factor $\sqrt{\frac{2}{\pi}}$ is added for making certain other formulas nicer later on.

Lemma 2 The half-integer Bessel functions $J_{n+\frac{1}{2}}$ are given by the formula

$$
J_{n+\frac{1}{2}}(z)=(-1)^{n} \sqrt{\frac{2}{\pi}} z^{n+\frac{1}{2}}\left(z^{-1} \frac{d}{d z}\right)^{n} \frac{\sin z}{z}
$$

Proof. The proof goes by induction on n. It is easily checked for $n=0$. By induction assumption for $n-1$, we can write

$$
\left(z^{-1} \frac{d}{d z}\right)^{n-1} \frac{\sin z}{z}=(-1)^{n-1} z^{\frac{1}{2}-n} \sqrt{\frac{\pi}{2}} J_{n-\frac{1}{2}}(z)
$$

Using this, we can reduce differentiating n times to only differentiating once in the formula below:

$$
\begin{gathered}
(-1)^{n} \sqrt{\frac{2}{\pi}} z^{n+\frac{1}{2}}\left(z^{-1} \frac{d}{d z}\right)^{n} \frac{\sin z}{z}=-z^{n-\frac{1}{2}} \frac{d}{d z}\left(J_{n-\frac{1}{2}}(z) z^{\frac{1}{2}-n}\right)= \\
=-z^{n-\frac{1}{2}}\left[J_{n-\frac{1}{2}}^{\prime}(z) z^{\frac{1}{2}-n}+\left(\frac{1}{2}-n\right) z^{-\frac{1}{2}-n} J_{n-\frac{1}{2}}(z)\right]= \\
=-\left[J_{n-\frac{1}{2}}^{\prime}(z)-\frac{n-\frac{1}{2}}{z} J_{n-\frac{1}{2}}(z)\right]=J_{n+\frac{1}{2}}(z)
\end{gathered}
$$

where we used the recursive formula (1) for $s=n-\frac{1}{2}$. This finishes the proof.

Example Check that I did not make a mistake by calculating

$$
J_{3 / 2}=\sqrt{\frac{2}{\pi}} z^{-3 / 2}(\sin z-z \cos z)
$$

What about its limit if $z \rightarrow 0$? Recall that it should be finite!

