MATH 21D FINAL SPRING 2002 Name:

Section :

Justify your answers! Put all the essential steps of your solution on this sheet!

- 1. Compute the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{3^n}{n^3} (x-3)^n$.
- 2. Determine whether the following series converge. (a) $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^3+n}}$ (b) $\sum_{n=1}^{\infty} \ln(\frac{n}{n+1})$
- 3. Find the general solution of $y' + \frac{1}{t}y = \cos t$.
- 4. Solve the initial value problem y'' + 2y' + 2y = 0, y(0) = 1 and y'(0) = 2.
- 5. Determine the general solution of $y'' 4y' y = e^{3t}$.
- 6. (a) Compute the Laplace transform of the function f(t) defined by $f(t) = t u_1(t)(t-1)$ and $u_1(t) = 0$ for t < 1 and $u_1(t) = 1$ for $t \ge 1$. (In notation used in class, $f(t) = t sh_1(t)$). (b) Compute the inverse Laplace transform of $\frac{s}{s^2+2s+5} + \frac{1}{s^2-3s+2}$.
- 7. Solve the following initial value problem via Laplace transformation: y'' + 4y = g(t), where g(t) = 1 for $0 \le t < 1$ and g(t) = 0 for $t \ge 1$, and where y(0) = 0 = y'(0).
- 8. Find a particular solution of the differential equation $ty'' (1+t)y' + y = t^2e^{2t}$ via variation of parameters. You may use that the homogeneous differential equation has solutions $y_1(t) = 1+t$ and $y_2(t) = e^t$.
- 9. (a) Find the recursion relation for the coefficients a_n of a power series solution $y(x) = \sum_{n=0}^{\infty} a_n x^n$ of the differential equation y'' xy' + 2y = 0(b) Determine all solutions in (a) for which $a_1 = 0$.
- 10. (a) Show that x = 0 is a regular singular point for the differential equation 3x²y"+2xy'+x²y = 0 and compute the roots of its indicial equation.
 (b) Compute the recursion relation for the coefficients of the power series solution y(x) = x^r ∑_{n=0}[∞] a_nxⁿ of (a), for r the larger root of the indicial equation.
 (c) Compute the coefficients a₁, a₂ and a₃ if a₀ = 1.