Justify your answers! Put all the essential steps of your solution on this sheet!

1. Compute the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{3^{n}}{n^{3}}(x-3)^{n}$.
2. Determine whether the following series converge.
(a) $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{3}+n}}$
(b) $\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$
3. Find the general solution of $y^{\prime}+\frac{1}{t} y=\cos t$.
4. Solve the initial value problem $y^{\prime \prime}+2 y^{\prime}+2 y=0, y(0)=1$ and $y^{\prime}(0)=2$.
5. Determine the general solution of $y^{\prime \prime}-4 y^{\prime}-y=e^{3 t}$.
6. (a) Compute the Laplace transform of the function $f(t)$ defined by $f(t)=t-u_{1}(t)(t-1)$ and $u_{1}(t)=0$ for $t<1$ and $u_{1}(t)=1$ for $t \geq 1$. (In notation used in class, $f(t)=t-\operatorname{sh}_{1}(t)$). (b) Compute the inverse Laplace transform of $\frac{s}{s^{2}+2 s+5}+\frac{1}{s^{2}-3 s+2}$.
7. Solve the following initial value problem via Laplace transformation: $y^{\prime \prime}+4 y=g(t)$, where $g(t)=1$ for $0 \leq t<1$ and $g(t)=0$ for $t \geq 1$, and where $y(0)=0=y^{\prime}(0)$.
8. Find a particular solution of the differential equation $t y^{\prime \prime}-(1+t) y^{\prime}+y=t^{2} e^{2 t}$ via variation of parameters. You may use that the homogeneous differential equation has solutions $y_{1}(t)=1+t$ and $y_{2}(t)=e^{t}$.
9. (a) Find the recursion relation for the coefficients a_{n} of a power series solution $y(x)=$ $\sum_{n=0}^{\infty} a_{n} x^{n}$ of the differential equation $y^{\prime \prime}-x y^{\prime}+2 y=0$
(b) Determine all solutions in (a) for which $a_{1}=0$.
10. (a) Show that $x=0$ is a regular singular point for the differential equation $3 x^{2} y^{\prime \prime}+2 x y^{\prime}+x^{2} y=$ 0 and compute the roots of its indicial equation.
(b) Compute the recursion relation for the coefficients of the power series solution
$y(x)=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}$ of (a), for r the larger root of the indicial equation.
(c) Compute the coefficients a_{1}, a_{2} and a_{3} if $a_{0}=1$.
