MATH 210B WINTER 2001: MIDTERM

- Let V be the vector space of polynomials of degree ≤ 2 on the interval [-1,1], and let (,) be the usual inner product, given by (f,g) = ∫¹₋₁ f(x)g(x)dx.
 a) Prove one of the following identities (whichever you like): (1,1) = 2, (x, x) = 2/3 = (1, x²), (x², x²) = 2/5 and (xⁱ, x^j) = 0 whenever i j odd (for 0 ≤ i, j ≤ 2).
 b) Let D: V → V be defined by Df = f'. Compute D[†]x². (hint: Write D[†]x² = ax² + bx + c and find equations for the coefficients a, b, c. You may use all the identities in a).
- 2. Let V be an inner product space and let $A: V \to V$ be linear. Show that all eigenvalues of $A^{\dagger}A$ are real and positive.
- 3. Let $H : L^2(\mathbf{R}) \to L^2(\mathbf{R})$ be the operator related to the harmonic oscillator, defined by $H(f) = x^2 f f''$. Moreover, define for any operator $A : V \to V$ the operator exp(A) by its power series $exp(A) = \sum \frac{1}{m!} A^m$. Show that exp(iH) is a unitary operator (hint: you may use that $L^2(\mathbf{R})$ contains a complete orthogonal set $\{H_n e^{-x^2/2}, n \in \mathbf{N}\}$, where H_n is the *n*-th Hermite polynomial, and that these are eigenvectors of H).