
MATH 210B WINTER 2005: FINAL

Instructor: Hans Wenzl

1. Consider the integral equation f = 1 + K(f), where K(f)(x) = 9
∫ 1/3

0

√
1 − xyf(y)dy.

(a) Compute the exact solution for the equation f = 1 + K0(f), with
K0(f)(x) = 9

∫ 1/3

0
(1 − xy/2)f(y)dy.

(b) Estimate ‖K − K0‖; you may use that |√1 − z − (1 − z/2)| ≤ |z|2/4 for |z| ≤ 1/3.
(c) Find a good estimate for ‖(I − K0)−1‖; you may use that the eigenvalues of K0 are approxi-

mately 0, .04 and 3.1.
(d) Derive the equation f = (I −K0)−1(1) + (I −K0)−1(K −K0)(f) for the exact solution of our

integral equation. Using the estimates above, show that the difference in L2-norm between
the solution in (a) and the exact solution is quite small. (If you could not solve (b) or (c), you
may use the estimates .01 for (b) and 5 for (c)).

Sol. (a) It follows from the equation f(x) = 1+9
∫ 1/3

0
f(y)dy−x9

∫ 1/3

0
yf(y)/2 dy that f(x) = a+bx

for suitable coefficents a and b. Plugging this into the equation, we obtain

a + bx = 1 + 9
∫ 1/3

0

(1 − xy/2)(ay + b)dy = (1 + 3a + b/2) − (a/4 + b/18)x.

Comparing the coefficients of 1 and x, we obtain two linear equations for a and b. Solving
them, we obtain the solution f(x) = 18

143x − 76
143 . For (b) we use the estimate

‖K − K0‖2 ≤ 92

∫ 1/3

0

∫ 1/3

0

|
√

1 − xy − (1 − xy/2)|2dxdy ≤ 92

∫ 1/3

0

∫ 1/3

0

x4y4/16 dxdy.

Calculating the integral, one obtains ‖K − K0‖ ≤ 1/(27 · 20) ≤ .002. For (c), we use the fact
that the norm of a selfadjoint compact Hermitian operator is given by its largest eigenvalue
(see homework problem). Hence we get ‖(I − K0)−1‖ is equal to the maximum of (1 − λ)−1,
with λ an eigenvalue of K0. For the given (slightly incorrect values), this would be 1. Finally,
we obtain from f = (I −K0)−1(1)+(I −K0)−1(K −K0)(f), where the solution of (a) is given
by f0 = (I − K0)−1(1), that

‖f − f0‖ ≤ ‖(I − K0)−1(K − K0)(f)‖ ≤ ‖(I − K0)−1‖‖(K − K0)‖‖(f)‖ ≤ .002‖(f)‖.

2. Let H be a self-adjoint compact operator. Then H − iI is invertible. Show that (H + iI)(H −
iI)−1 is a unitary operator.

Sol. Method 1 Let U = (H + iI)(H − iI)−1. Then, using H† = H and (iI)† = −iI, we get

U†U = (H − iI)(H + iI)−1(H + iI)(H − iI)−1 = I,

with the proof for UU† = I similar. Method 2: We know that the space V on which H acts
has an orthonormal basis of eigenvectors (vn) with real eigenvalues λn. But then

(H + iI)(H − iI)−1vn = αnvn = (λn + i)(λn − i)−1vn.



As |λn + i| =
√

λ2
n + 1 = |λn − i|, because λn is real, we have |αn| = 1. Let v =

∑
βnvn be

some vector in V . Then

‖Uv‖2 = ‖
∑

n

αnβnvn‖2 =
∑

n

|αnβn|2 =
∑

n

|βn|2 = ‖v‖2;

here we used the fact that the (vn) are an orthonormal basis, and that |αn| = 1 for all n.

3. Let Hn be the n-th Hermite polynomial and let yn(x) = Hn(x)e−x2/2. The only things
you need to know about Hermite polynomials is that H0 = 1, Hn+1 = 2xHn − H ′

n and
H ′

n = 2nHn−1.
(a) Show that f̂ ′(k) = ikf̂(k) for f(x) = P (x)e−x2/2 with P (x) a polynomial, and that 2y′

n =
−yn+1 + 2nyn−1.

(b) Show that ŷn(k) = (−i)nHn(k)e−k2/2.

Sol. The first statement of (a) is shown using integration by parts and the fact that limx→∞ f(x) =
0. Moreover, we have

2(
d

dx
Hne−x2/2) = 2H ′

ne−x2/2 − 2xHne−x2/2 =

= (2H ′
n − (Hn+1 + H ′

n))e−x2/2 = (2nHn−1 − Hn+1)e−x2/2,

where we used H ′
n = 2nHn−1. This shows the second claim of (a). The proof of (b) goes by

induction on n, where ŷ0(k) = y0(k) was proved in class, and ŷ1 = −ŷ′
0 (by second statement

in (a) for n = 0, using y−1 = 0) = −2ikŷ0 (by first statement in (a); observe that H1(x) = 2x).
To prove the general case, observe that

ŷn+1 = 2nŷn−1 − 2ŷ′
n = 2n(−i)n−1yn−1(k) − 2(−i)nikyn(k) =

by induction assumption,

= (−i)n+1[2kyn(k) − 2nyn−1(k)] = (−i)n+1(2kHn(k) − 2nHn−1(k)]e−k2/2 = (−i)n+1yn+1.

4. Calculate ‖δ(x)‖2 (Suggestion: Choose easy-to-integrate functions fn which approximate the
delta function δ(x) if n → ∞).

Sol. The easiest choice for fn would be fn(x) = nχ[−1/2n,1/2n](x), where χ[−n/2,n/2](x) is equal to
1 or 0 depending on whether x is in the interval [−n/2, n/2] or not. Then

∫ 1

−1
fndx = 1 for all

n ∈ N and limn→∞ fn(x) = 0 for all x 6= 0. This shows that the fn’s approximate δ(x) and

‖δ(x)‖2 = lim
n→∞

∫ 1

1

n2χ2
[−1/2n,1/2n](x)dx = lim

n→∞

∫ 1/2n

−1/2n

n2dx = lim
n→∞n = ∞.


