Instructor: Hans Wenzl

1. Consider the integral equation $f=1+K(f)$, where $K(f)(x)=9 \int_{0}^{1 / 3} \sqrt{1-x y} f(y) d y$.
(a) Compute the exact solution for the equation $f=1+K_{0}(f)$, with $K_{0}(f)(x)=9 \int_{0}^{1 / 3}(1-x y / 2) f(y) d y$.
(b) Estimate $\left\|K-K_{0}\right\|$; you may use that $|\sqrt{1-z}-(1-z / 2)| \leq|z|^{2} / 4$ for $|z| \leq 1 / 3$.
(c) Find a good estimate for $\left\|\left(I-K_{0}\right)^{-1}\right\|$; you may use that the eigenvalues of K_{0} are approximately $0, .04$ and 3.1.
(d) Derive the equation $f=\left(I-K_{0}\right)^{-1}(1)+\left(I-K_{0}\right)^{-1}\left(K-K_{0}\right)(f)$ for the exact solution of our integral equation. Using the estimates above, show that the difference in L^{2}-norm between the solution in (a) and the exact solution is quite small. (If you could not solve (b) or (c), you may use the estimates .01 for (b) and 5 for (c)).

Sol. (a) It follows from the equation $f(x)=1+9 \int_{0}^{1 / 3} f(y) d y-x 9 \int_{0}^{1 / 3} y f(y) / 2 d y$ that $f(x)=a+b x$ for suitable coefficents a and b. Plugging this into the equation, we obtain

$$
a+b x=1+9 \int_{0}^{1 / 3}(1-x y / 2)(a y+b) d y=(1+3 a+b / 2)-(a / 4+b / 18) x .
$$

Comparing the coefficients of 1 and x, we obtain two linear equations for a and b. Solving them, we obtain the solution $f(x)=\frac{18}{143} x-\frac{76}{143}$. For (b) we use the estimate

$$
\left\|K-K_{0}\right\|^{2} \leq 9^{2} \int_{0}^{1 / 3} \int_{0}^{1 / 3}|\sqrt{1-x y}-(1-x y / 2)|^{2} d x d y \leq 9^{2} \int_{0}^{1 / 3} \int_{0}^{1 / 3} x^{4} y^{4} / 16 d x d y
$$

Calculating the integral, one obtains $\left\|K-K_{0}\right\| \leq 1 /(27 \cdot 20) \leq .002$. For (c), we use the fact that the norm of a selfadjoint compact Hermitian operator is given by its largest eigenvalue (see homework problem). Hence we get $\left\|\left(I-K_{0}\right)^{-1}\right\|$ is equal to the maximum of $(1-\lambda)^{-1}$, with λ an eigenvalue of K_{0}. For the given (slightly incorrect values), this would be 1. Finally, we obtain from $f=\left(I-K_{0}\right)^{-1}(1)+\left(I-K_{0}\right)^{-1}\left(K-K_{0}\right)(f)$, where the solution of (a) is given by $f_{0}=\left(I-K_{0}\right)^{-1}(1)$, that

$$
\left\|f-f_{0}\right\| \leq\left\|\left(I-K_{0}\right)^{-1}\left(K-K_{0}\right)(f)\right\| \leq\left\|\left(I-K_{0}\right)^{-1}\right\|\left\|\left(K-K_{0}\right)\right\|\|(f)\| \leq .002\|(f)\| .
$$

2. Let H be a self-adjoint compact operator. Then $H-i I$ is invertible. Show that $(H+i I)(H-$ $i I)^{-1}$ is a unitary operator.

Sol. Method 1 Let $U=(H+i I)(H-i I)^{-1}$. Then, using $H^{\dagger}=H$ and $(i I)^{\dagger}=-i I$, we get

$$
U^{\dagger} U=(H-i I)(H+i I)^{-1}(H+i I)(H-i I)^{-1}=I,
$$

with the proof for $U U^{\dagger}=I$ similar. Method 2: We know that the space V on which H acts has an orthonormal basis of eigenvectors $\left(v_{n}\right)$ with real eigenvalues λ_{n}. But then

$$
(H+i I)(H-i I)^{-1} v_{n}=\alpha_{n} v_{n}=\left(\lambda_{n}+i\right)\left(\lambda_{n}-i\right)^{-1} v_{n} .
$$

As $\left|\lambda_{n}+i\right|=\sqrt{\lambda_{n}^{2}+1}=\left|\lambda_{n}-i\right|$, because λ_{n} is real, we have $\left|\alpha_{n}\right|=1$. Let $v=\sum \beta_{n} v_{n}$ be some vector in V. Then

$$
\|U v\|^{2}=\left\|\sum_{n} \alpha_{n} \beta_{n} v_{n}\right\|^{2}=\sum_{n}\left|\alpha_{n} \beta_{n}\right|^{2}=\sum_{n}\left|\beta_{n}\right|^{2}=\|v\|^{2}
$$

here we used the fact that the $\left(v_{n}\right)$ are an orthonormal basis, and that $\left|\alpha_{n}\right|=1$ for all n.
3. Let H_{n} be the n -th Hermite polynomial and let $y_{n}(x)=H_{n}(x) e^{-x^{2} / 2}$. The only things you need to know about Hermite polynomials is that $H_{0}=1, H_{n+1}=2 x H_{n}-H_{n}^{\prime}$ and $H_{n}^{\prime}=2 n H_{n-1}$.
(a) Show that $\hat{f}^{\prime}(k)=i k \hat{f}(k)$ for $f(x)=P(x) e^{-x^{2} / 2}$ with $P(x)$ a polynomial, and that $2 y_{n}^{\prime}=$ $-y_{n+1}+2 n y_{n-1}$.
(b) Show that $\hat{y}_{n}(k)=(-i)^{n} H_{n}(k) e^{-k^{2} / 2}$.

Sol. The first statement of (a) is shown using integration by parts and the fact that $\lim _{x \rightarrow \infty} f(x)=$ 0 . Moreover, we have

$$
\begin{gathered}
2\left(\frac{d}{d x} H_{n} e^{-x^{2} / 2}\right)=2 H_{n}^{\prime} e^{-x^{2} / 2}-2 x H_{n} e^{-x^{2} / 2}= \\
=\left(2 H_{n}^{\prime}-\left(H_{n+1}+H_{n}^{\prime}\right)\right) e^{-x^{2} / 2}=\left(2 n H_{n-1}-H_{n+1}\right) e^{-x^{2} / 2}
\end{gathered}
$$

where we used $H_{n}^{\prime}=2 n H_{n-1}$. This shows the second claim of (a). The proof of (b) goes by induction on n, where $\hat{y}_{0}(k)=y_{0}(k)$ was proved in class, and $\hat{y}_{1}=-\hat{y}_{0}^{\prime}$ (by second statement in (a) for $n=0$, using $\left.y_{-1}=0\right)=-2 i k \hat{y}_{0}$ (by first statement in (a); observe that $\left.H_{1}(x)=2 x\right)$. To prove the general case, observe that

$$
\hat{y}_{n+1}=2 n \hat{y}_{n-1}-2 \hat{y}_{n}^{\prime}=2 n(-i)^{n-1} y_{n-1}(k)-2(-i)^{n} i k y_{n}(k)=
$$

by induction assumption,

$$
=(-i)^{n+1}\left[2 k y_{n}(k)-2 n y_{n-1}(k)\right]=(-i)^{n+1}\left(2 k H_{n}(k)-2 n H_{n-1}(k)\right] e^{-k^{2} / 2}=(-i)^{n+1} y_{n+1}
$$

4. Calculate $\|\delta(x)\|^{2}$ (Suggestion: Choose easy-to-integrate functions f_{n} which approximate the delta function $\delta(x)$ if $n \rightarrow \infty)$.
Sol. The easiest choice for f_{n} would be $f_{n}(x)=n \chi_{[-1 / 2 n, 1 / 2 n]}(x)$, where $\chi_{[-n / 2, n / 2]}(x)$ is equal to 1 or 0 depending on whether x is in the interval $[-n / 2, n / 2]$ or not. Then $\int_{-1}^{1} f_{n} d x=1$ for all $n \in \mathbf{N}$ and $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for all $x \neq 0$. This shows that the f_{n} 's approximate $\delta(x)$ and

$$
\|\delta(x)\|^{2}=\lim _{n \rightarrow \infty} \int_{1}^{1} n^{2} \chi_{[-1 / 2 n, 1 / 2 n]}^{2}(x) d x=\lim _{n \rightarrow \infty} \int_{-1 / 2 n}^{1 / 2 n} n^{2} d x=\lim _{n \rightarrow \infty} n=\infty
$$

