Instructor: Hans Wenzl

1. Solve the integral equation $f(x)=\sin (x)+\lambda \int_{0}^{\pi} \cos (x+y) f(y) d y$ (Hint: $\cos (x+y)=$ $\cos (x) \cos (y)-\sin (x) \sin (y))$. Does one get a solution for all values of λ ?
2. (a) Compute $\lim _{n \rightarrow \infty} \frac{1}{n} \cos n x$ with respect to the L^{2} norm on the interval $[-\pi, \pi]$. (b) Is the differential operator $d / d x$ a continuous operator on the space of differentiable functions on $[-\pi, \pi]$? Either give a counter example or prove continuity of the operator.
3. (a) Show that $x \delta(x)=0$ (Note: you can not show this by evaluating the left hand side at all points). Do all your integrations over an interval $[a, b]$ with $a<x<b$.
(b) Show that $L G\left(t, t^{\prime}\right)=\delta\left(t-t^{\prime}\right)$ for $L=d^{2} / d t^{2}+\omega_{0}^{2}$ and $G\left(t, t^{\prime}\right)=\theta\left(t-t^{\prime}\right) \frac{\sin \left(\omega_{0}\left(t-t^{\prime}\right)\right)}{\omega_{0}}$.
4. Let $f(x)=|x|$ for $-\pi \leq x \leq \pi$.
(a) Find the Fourier coefficients $\left(a_{k}\right)$ and $\left(b_{k}\right)$ for f, defined by

$$
a_{k}=\int_{-\pi}^{\pi} f(x) \cos (x) d x, \quad b_{k}=\int_{-\pi}^{\pi} f(x) \sin (x) d x .
$$

Let $f_{n}=\frac{1}{\pi}\left[a_{0} / 2+\sum_{k=1}^{n} a_{k} \cos (k x)+b_{k} \sin (k x)\right]$.
(b) Does f_{n} converge to f in L^{2} norm?
(c) Does f_{n} converge to f uniformely?

