
SOLUTION TO SELECTED HOMEWORK PROBLEM

Several students asked me about Problem 5 in Section 7.6, page 497. So here is an outline of the solution.
Although by now, we know an easier how to do it (see below), it is still instructive knowing how to do it the
direct way. In any case, if you had to do the integral of F instead of the curl ∇ × F, you probably would
have to parametrize it anyway.

Problem Evaluate
∫ ∫

S
(∇× F ) · dS, where S is the surface x2 + y2 + 3z2 = 1, z ≤ 0, and F is the vector

field F(x, y, z) = (y,−x, zx3y2), with the normal vector n pointing upwards.

Solution 1 : (Direct method) We calculate

(∇× F)(x, y, z) = (2yzx3,−3zx2y2,−2).

To parametrize S, observe that we can view S as part of the graph of the function z = −
√

(1− x2 − y2)/3
(just solve for the z coordinate, keeping in mind that z ≤ 0). Hence we get the parametrization

T (x, y) = (x, y,−
√

(1− x2 − y2)/3), x2 + y2 ≤ 1.

(You can visualize S as a bowl below the xy plane, whose intersection with the xy plane is the unit circle).
We get from this the tangent vectors

Tx = (1, 0,
−x

−3
√

(1− x2 − y2)/3
), Ty = (0, 1,

y

−3
√

(1− x2 − y2)/3
).

Hence we get

Tx × Ty = (
−x√

3(1− x2 − y2)
,

−y√
3(1− x2 − y2)

, 1).

The vector Tx×Ty points upwards, as its z-coordinate is positive. Hence we have the orientation as required.
Let D denote the unit disk x2 + y2 ≤ 1 in R2. Then we can set up the integral as∫ ∫

S

(∇× F) · dS =

∫ ∫
D

(∇× F)(x, y, ,−
√

(1− x2 − y2)/3) · (Tx × Ty) dx dy

Using the formula for (∇× F)(x, y, z) at the beginning, we obtain for the integral∫ ∫
D

(−2x3y
√

(1− x2 − y2)/3, 3x2y2
√

(1− x2 − y2)/3,−2) · ( −x√
3(1− x2 − y2)

,
−y√

3(1− x2 − y2)
, 1) dx dy

Evaluating the dot product, we obtain∫ ∫
D

2x4y(1− x2 − y2)/3− x2y3(1− x2 − y2)− 2 dx dy.

Integrating over the disk, we use polar coordinates x = r cos θ, y = r sin θ and dx dy = r dr dθ. Then our
integral becomes ∫ 2π

0

∫ 1

0

(
2

3
r5 cos4 θ sin θ(1− r2)− r5 cos2 θ sin3 θ(1− r2)− 2)r dr dθ.

Observe that we are allowed to integrate with respect to θ first. Moreover, we have∫ 2π

0

cos4 θ sin θ dθ = −1

5
cos5 θ|2π0 = 0,
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∫ 2π

0

cos2 θ sin3 θ dθ =

∫ 2π

0

cos2 θ(1− cos2 θ) sin θ dθ =

∫ 2π

0

cos2 θ sin θ dθ −
∫ 2π

0

cos4 θ sin θ dθ,

and one shows as in the first case that this integral has to be equal to 0. Hence we can ignore the first two
complicated terms of the integral and obtain as result the integral∫ 2π

0

∫ 1

0

−2r dr dθ = −2π.

Solution 2 : The problem becomes significantly easier if you use Stokes’ theorem. Observe that the
boundary of S is the unit circle C in the xy plane. Draw a picture for yourself (using the characterization
of S as a bowl, see Solution 1) to convince yourself that the correct orientation for the circle, as required for
Stokes’ theorem is counterclockwise. Hence we can paramtrize C as usual by c(t) = (cos t, sin t, 0), and we
obtain ∫ ∫

S

(∇× F) · dS =

∫
C

F · ds =

∫ 2π

0

F(cos t, sin t, 0) · (− sin t, cos t, 0) dt =

=

∫ 2π

0

(sin t,− cos t, 0) · (− sin t, cos t, 0) dt =

∫ 2π

0

− sin2 t− cos2 t dt = −2π.
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