## MATH 20E PRACTICE MIDTERM I

NO BOOKS, NO NOTES!! (except for 1 'cheat sheet')

1. (a) The movement of a particle is described by the path $\mathbf{R}(t)=\left(5-t, 3-t^{2}, t\right)$ for $0 \leq t \leq 1$. Compute its position and direction (velocity vector) at $t=1$.
(b) Assume that the particle continues flying in a straight line for $t \geq 1$ in the same direction as for $t=1$. Where does it hit the $y z$ plane?
2. A cardbord leans against the sphere $x^{2}+y^{2}+(z-3)^{2}=9$ at the point $(2,-2,4)$. Find the equation of the line which is the intersection of the cardbord with the $x y$-plane, i.e with $z=0$.
3. (a) Prove that $\nabla \times(\nabla f)=0$ for the scalar function $f(x, y, z)$.
(b) Let $\mathbf{F}(x, y, z)=\left(2 x y, x^{2}+a y z, y^{2}\right)$, where $a$ is a constant. Using (a), show that $\mathbf{F}$ can not be conservative (i.e. it can not be the gradient of a scalar function $f(x, y, z)$ ) for all but possibly one value of $a$. Which value?
4. A bug finds itself in a toxic environment. The toxicity level is given by $T(x, y)=$ $2 x^{2}-4 y^{2}+x^{3}$. The bug is at $(-1,2)$.
(a) In which direction should it move to lower the toxicity the fastest.
(b) Find the second order Taylor approximation of $T(x, y)$ at $(0,0)$.
