Please justify all your steps!

- 1. (a) Find the area of the triangle with corners (1,2,2), (3,2,1) and (2,0,2).(b) Find the equation of the plane which contains the triangle in (a).
- 2. Calculate the integral $\int \int_D \cos(x^2 + y^2) dx dy$, where D is the region given by $x \ge 0, y \ge 0$ and $x^2 + y^2 \le (\pi/2)^2$.
- 3. Evaluate the line integral $\int_C \mathbf{F} \cdot ds$ for the vector field $\mathbf{F}(x, y, z) = (y, 2x, y)$ and the path C given by $c(t) = (t, t^2, t^3)$ for $0 \le t \le 1$.
- 4. Let S be the part of the paraboloid $z = x^2 + y^2$ which is inside the cylinder $x^2 + y^2 = 4$. (a) Calculate its surface area
 - (b) Calculate the integral $\int \int_S (x^2 + y^2) dS$.