No calculators, no books, only one cheat sheet allowed. Justify your answers!

1. Compute the line integral $\int_{C} 3 y^{2} d x+x d y$, where C is the straight line from $(0,1)$ to $(1,2)$.
2. Compute the integral $\iint_{S} z+x d S$, where S is the part of the plane $2 x+y+z=6$ with $x \geq 0, y \geq 0$ and $z \geq 0$.
3. Let $\mathbf{F}_{1}(x, y, z)=\left(0, y^{2}, x\right)$ and $\mathbf{F}_{2}(x, y, z)=(z, 2, x)$, and let C be a curve with initial point $(0,0,0)$ and endpoint $(1,2,1)$. For each of the line integrals $\int_{C} \mathbf{F}_{1} \cdot d \mathbf{R}$ and $\int_{C} \mathbf{F}_{2} \cdot d \mathbf{R}$ either compute its value or give a reason why it can not be computed.
4. Compute the volume of the region D given by $1 \leq x^{2}+y^{2}+z^{2} \leq 4$ and $z \geq 0$ via a triple integral.
5. Compute the flux of the vector field $\mathbf{F}(x, y, z)=\left(x, 1, z^{2}\right)$ through the half cylinder S given by $x^{2}+y^{2}=4, y \geq 0$ and $0 \leq z \leq 1$, with the normal vector pointing away from the origin.
6. Compute $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$, where S is given by $x^{2}+y^{2}+(z-1)^{2}=2$ and $z \geq 0$, and $\mathbf{F}(x, y, z)=\left(-e^{\sin z} y, x+\sin z, \cos x\right)$, and the normal vector pointing outside the sphere.
7. Let $\mathbf{F}(x, y)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)$.
(a) Compute $\int_{C} \mathbf{F} \cdot d \mathbf{R}$ for C the unit circle parametrized counterclockwise.
(b) State Green's theorem and explain why the result in (a) does not contradict it.
(c) Compute $\int_{\tilde{C}} \mathbf{F} \cdot d \mathbf{R}$ for \tilde{C} a curve going around the origin counterclockwise, and containing C in its interior.
8. Let $\mathbf{F}(x, y, z)=\left(y+z, x-y-z^{2}, 1+z\right)$.
(a) Compute $\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}$, where S_{1} is the unit disk in the $x y$ plane, i.e. $S_{1}=$ $\left\{(x, y, 0), x^{2}+y^{2} \leq 1\right\}$, with the normal vector showing upwards.
(b) Compute $\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}$, where S_{2} is the surface given by $z=1-e^{1-x^{2}-y^{2}}$ and $z \leq 0$, with the normal vector pointing downwards at $(0,0,1-e)$. (Hint : If you try to solve part (b) directly, you will end up with some very ugly integrals. Consider the closed surface consisting of both S_{1} and S_{2}).

No calculators, no books, only one cheat sheet allowed. Justify your answers!

1. Compute the line integral $\int_{C} y^{2} d x+x d y$, where C is the straight line from $(1,0)$ to $(2,1)$.
2. Compute the integral $\iint_{S} z+x d S$, where S is the part of the plane $x+2 y+z=6$ with $x \geq 0, y \geq 0$ and $z \geq 0$.
3. Compute the volume of the region D given by $1 \leq x^{2}+y^{2}+z^{2} \leq 9$ and $z \geq 0$ via a triple integral.
4. Let $\mathbf{F}_{1}(x, y, z)=\left(0, y, x^{2}\right)$ and $\mathbf{F}_{2}(x, y, z)=(z, 2, x)$, and let C be a curve with initial point $(0,0,0)$ and endpoint $(2,2,1)$. For each of the line integrals $\int_{C} \mathbf{F}_{1} \cdot d \mathbf{R}$ and $\int_{C} \mathbf{F}_{2} \cdot d \mathbf{R}$ either compute its value or give a reason why it can not be computed.
5. Compute the flux of the vector field $\mathbf{F}(x, y, z)=\left(x, 1, z^{2}\right)$ through the half cylinder S given by $x^{2}+y^{2}=4, y \geq 0$ and $0 \leq z \leq 2$, with the normal vector pointing outside.
6. Let $\mathbf{F}(x, y)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)$.
(a) Compute $\int_{C} \mathbf{F} \cdot d \mathbf{R}$ for C the unit circle parametrized counterclockwise.
(b) State Green's theorem and explain why the result in (a) does not contradict it.
(c) Compute $\int_{\tilde{C}} \mathbf{F} \cdot d \mathbf{R}$ for \tilde{C} a curve going around the origin counterclockwise, and containing C in its interior.
7. Compute $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$, where S is given by $x^{2}+y^{2}+(z-1)^{2}=2$ and $z \geq 0$, and $\mathbf{F}(x, y, z)=\left(-e^{z^{2}} y, x+\sin z, \sin x\right)$, with the normal vector pointing away from the origin.
8. Let $\mathbf{F}(x, y, z)=\left(y+z^{2}, x-y+z, 1+z\right)$.
(a) Compute $\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}$, where S_{1} is the unit disk in the $x y$ plane, i.e. $S_{1}=$ $\left\{(x, y, 0), x^{2}+y^{2} \leq 1\right\}$, with the normal vector showing upwards.
(b) Compute $\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}$, where S_{2} is the surface given by $z=1-e^{1-x^{2}-y^{2}}$ and $z \leq 0$, with the normal vector pointing downwards at $(0,0,1-e)$. (Hint : If you try to solve part (b) directly, you will end up with some very ugly integrals. Consider the closed surface consisting of both S_{1} and S_{2}).
