
FINAL MATH 20E FALL 03

No calculators, no books, only one cheat sheet allowed. Justify your answers!

1. Compute the line integral
∫
C

3y2dx + xdy, where C is the straight line from (0,1) to
(1,2).

2. Compute the integral
∫ ∫

S
z + x dS, where S is the part of the plane 2x + y + z = 6

with x ≥ 0, y ≥ 0 and z ≥ 0.

3. Let F1(x, y, z) = (0, y2, x) and F2(x, y, z) = (z, 2, x), and let C be a curve with initial
point (0,0,0) and endpoint (1,2,1). For each of the line integrals

∫
C
F1 · dR and∫

C
F2 · dR either compute its value or give a reason why it can not be computed.

4. Compute the volume of the region D given by 1 ≤ x2 + y2 + z2 ≤ 4 and z ≥ 0 via a
triple integral.

5. Compute the flux of the vector field F(x, y, z) = (x, 1, z2) through the half cylinder
S given by x2 + y2 = 4, y ≥ 0 and 0 ≤ z ≤ 1, with the normal vector pointing away
from the origin.

6. Compute
∫ ∫

S
curlF · dS, where S is given by x2 + y2 + (z − 1)2 = 2 and z ≥ 0,

and F(x, y, z) = (−esin zy, x+ sin z, cosx), and the normal vector pointing outside the
sphere.

7. Let F(x, y) = ( −y
x2+y2 ,

x
x2+y2 ).

(a) Compute
∫
C
F · dR for C the unit circle parametrized counterclockwise.

(b) State Green’s theorem and explain why the result in (a) does not contradict it.

(c) Compute
∫
C̃
F · dR for C̃ a curve going around the origin counterclockwise, and

containing C in its interior.

8. Let F(x, y, z) = (y + z, x− y − z2, 1 + z).
(a) Compute

∫ ∫
S1

F · dS, where S1 is the unit disk in the xy plane, i.e. S1 =

{(x, y, 0), x2 + y2 ≤ 1}, with the normal vector showing upwards.

(b) Compute
∫ ∫

S2
F ·dS, where S2 is the surface given by z = 1−e1−x2−y2

and z ≤ 0,

with the normal vector pointing downwards at (0, 0, 1− e). (Hint : If you try to solve
part (b) directly, you will end up with some very ugly integrals. Consider the closed
surface consisting of both S1 and S2).
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1. Compute the line integral
∫
C
y2dx + xdy, where C is the straight line from (1,0) to

(2,1).

2. Compute the integral
∫ ∫

S
z + x dS, where S is the part of the plane x + 2y + z = 6

with x ≥ 0, y ≥ 0 and z ≥ 0.

3. Compute the volume of the region D given by 1 ≤ x2 + y2 + z2 ≤ 9 and z ≥ 0 via a
triple integral.

4. Let F1(x, y, z) = (0, y, x2) and F2(x, y, z) = (z, 2, x), and let C be a curve with initial
point (0,0,0) and endpoint (2,2,1). For each of the line integrals

∫
C
F1 · dR and∫

C
F2 · dR either compute its value or give a reason why it can not be computed.

5. Compute the flux of the vector field F(x, y, z) = (x, 1, z2) through the half cylinder S
given by x2 + y2 = 4, y ≥ 0 and 0 ≤ z ≤ 2, with the normal vector pointing outside.

6. Let F(x, y) = ( −y
x2+y2 ,

x
x2+y2 ).

(a) Compute
∫
C
F · dR for C the unit circle parametrized counterclockwise.

(b) State Green’s theorem and explain why the result in (a) does not contradict it.

(c) Compute
∫
C̃
F · dR for C̃ a curve going around the origin counterclockwise, and

containing C in its interior.

7. Compute
∫ ∫

S
curlF · dS, where S is given by x2 + y2 + (z − 1)2 = 2 and z ≥ 0, and

F(x, y, z) = (−ez2

y, x + sin z, sinx), with the normal vector pointing away from the
origin.

8. Let F(x, y, z) = (y + z2, x− y + z, 1 + z).
(a) Compute

∫ ∫
S1

F · dS, where S1 is the unit disk in the xy plane, i.e. S1 =

{(x, y, 0), x2 + y2 ≤ 1}, with the normal vector showing upwards.

(b) Compute
∫ ∫

S2
F ·dS, where S2 is the surface given by z = 1−e1−x2−y2

and z ≤ 0,

with the normal vector pointing downwards at (0, 0, 1− e). (Hint : If you try to solve
part (b) directly, you will end up with some very ugly integrals. Consider the closed
surface consisting of both S1 and S2).


