
Some Solutions for Practice Final 2

Observe : Solutions here may sometimes be a little sketchier than what is expected in
the exam. Make sure you justify all your steps.

3. (a) We have c′(t) = (0,− sin(t), cos(t)) and ‖c′(t)‖ = 1. Hence∫
C

f ds =

∫ π/2

0

cos2(t) sin(t) 1 dt = −1

3
cos3(t)|t=π/2t=0 = −03/3 + (1)3/3 =

1

3
.

(b) We have c′(t) = (− sin(t), cos(t), 1) and hence∫
C

F · ds =

∫ 2π

0

(− sin(t), cos(t), et) · (− sin(t), cos(t), 1) dt =

=

∫ 2π

0

1 + et dt = 2π + e2π − 1.

(c) One can guess that F = ∇f with f(x, y, z) = x2 + y2 + exz. (Or check that
curl F = 0 and calculate f(x, y, z) =

∫
c
F · ds for any curve from (0, 0, 0) to (x, y, z).)

Hence∫
C

F · ds = f(c(2π))− f(c(0)) = f(1, 0, 1)− f(1, 0, 0) = 1 + e− 1− 1 = e− 1.

4. Observe that for given F we have P (x, y) = x and Q(x, y) = x + y. Hence it follows
from Green’s theorem that∫

C

F · ds =

∫ ∫
D

∂

∂x
(x+ y)− ∂

∂y
(x) dx dy =

∫ ∫
D

1 dx dy = area(D) = 9π,

as D is the disk of radius 3.

5. (a) This is the parametrization of part of the unit sphere via spherical coordinates,
where now φ = u and θ = v. By a theorem in class (or by direct computation) we
obtain

Tu × Tv = sinu(sinu cos v, sinu sin v, cosu) = sinu Φ(u, v),

where Φ(u, v) is the given parametrization. Observe that the normal vector points
outwards. We now obtain∫ ∫

S

F · dS =

∫ 2π

0

∫ π/4

0

(1, 1, 1) · (sinu cos v, sinu sin v, cosu) sinu du dv =

=

∫ 2π

0

∫ π/4

0

sin2 u(cos v + sin v) + sinu cosu du dv.



Changing the order of integration, we see that the integral over the first summand is
equal to 0. Hence the integral is equal to

= 2π

∫ π/4

0

sinu cosu du = π sin2 u|u=π/4u=0 =
π

2
.

6. S can be parametrized by Φ(x, θ) = (x, x2 cos θ, x sin θ). Now calculate the integral∫ ∫
S

F · dS =

∫ 2π

0

∫ 2

1

1

2
(x− x2) dx = π

∫ 2

1

x− x2 dx =
−5

6
.

7. (b) The region is given by the parametrization

x = r cos θ, y = r sin θ, z = z,

with 0 ≤ z ≤ 2, 0 ≤ θ ≤ π/2 and 0 ≤ r ≤
√
x. We can then calculate the integral∫ ∫ ∫

W

x dx dy dz =

∫ 2

0

∫ √
z

0

∫ π/2

0

(r cos θ) r dr dθ dz.

(c) The divergence of the given vector field is ∂
∂x (x2/4) + ∂

∂y (xy/2) + ∂
∂z (1) = x.

Hence using the Gauss divergence theorem, the value of the surface integral to be
calculated here is equal to the value of the integral in (b).

8. We calculate that

div F =
∂

∂x
(x+ yz3) +

∂

∂y
(−y + sinh(x2)) +

∂

∂z
(z + x72) = 1− 1 + 1 = 1.

It follows from Gauss’ divergence theorem that∫ ∫
S

F · dS =

∫ ∫ ∫
W

div F dV =

∫ ∫ ∫
W

1 dV = vol(W ) =
4

3
πabc.

9. This is a hard problem. There are two key observations:
- The x and the y coordinates of the curve c are the same
- The projection of the curve c(t) into the xz plane still is a closed curve. Let D be the

two-dimensionial region inside the curve c̃(t) = (2 sin t− sin 2t, 2 cos t− cos t).
- Let S be the surface given by the parametrization

Φ(u, v) = (u, u, v), (u, v) ∈ D.
Then we have

Tu × Tv = (1, 1, 0)× (0, 0, 1) = (1,−1, 0),

and the boundary of S is given by the curve c. We can now apply Stokes’ Theorem∫
c

F · ds =

∫ ∫
S

curl F · dS =

=

∫ ∫
D

(0, 0,
∂Q

∂x
− ∂P

∂y
) · (1,−1, 0) du dv =

∫ ∫
D

0 du dv = 0.

Observe that as the result is equal to 0, we did not have to worry about orientations
or parametrization of D.


