Section :

Justify your answers!

1. Is the vector $\mathbf{b}=(1,-3,1)$ in the span of the vectors $\mathbf{a}_{1}=(1,2,2)$ and $\mathbf{a}_{2}=(3,1,1)$?
2. Compute all solutions of $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{lll}2 & 1 & 3 \\ 2 & 3 & 1 \\ 4 & 5 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}2 \\ 4 \\ 7\end{array}\right]$.
3. Let $\mathcal{B}=\{x+1, x-1\}$. Compute the coordinate vector $[2 x+6]_{\mathcal{B}}$. more problems on backside
4. (a) Compute the $L U$-decomposition $A=L U$ of $A=\left[\begin{array}{ll}2 & 2 \\ 4 & 2\end{array}\right]$.
(b) Show for an arbitrary $n \times n$ matrix A that $\operatorname{det}(A)=u_{11} u_{22} \cdots u_{n n}$, the product of the diagonal entries of the matrix U in the $L U$-decomposition.
5. Compute a basis for the column space of the matrix $A=\left[\begin{array}{llll}1 & 3 & 3 & 2 \\ 2 & 6 & 7 & 4 \\ 3 & 9 & 6 & 6\end{array}\right]$. What is its rank?
