RECYCLED PROBLEMS FROM OLD EXAMS

- 1. Let $\mathcal{B} = \{(1,0,0) \ (3,2,1), \ (0,0,2)\}$. You can assume that \mathcal{B} is a basis for \mathbb{R}^3 . (a) Which vector \mathbf{x} has the coordinate vector $[\mathbf{x}]_{\mathcal{B}} = (1,-1,2)$.
 - (b) Determine the coordinate vector of $\mathbf{y} = (2, -2, 3)$.
- 2. Compute the dimension of the span of the vectors (1, 4, 3), (1, 2, 1) and (1, 1, 0).
- 3. Compute the singular value decomposition for the matrix $A = \begin{vmatrix} 2 & 1 \\ -2 & 2 \end{vmatrix}$
- 4. Find all eigenvectors with eigenvalue 1 of the matrix $A = \begin{bmatrix} 2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{bmatrix}$.
- 5. Find all possible values for x and y such that the matrix $A = \begin{bmatrix} 0.6 & x \\ y & 0.6 \end{bmatrix}$ is an *orthogonal* matrix.
- 6. Find a good approximation for the vector $\begin{bmatrix} .8 & .6 \\ .2 & .4 \end{bmatrix}^n \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ for *n* very large (say n = 100).
- 7. Let $L : \mathbf{R}^3 \to \mathbf{R}^3$ be a linear map with eigenvectors (1, 3, 2) (with eigenvalue 1) and (2, 1, 4) (with eigenvalue 2). What is L(0, 5, 0)?
- 8. Let S be the row space of the matrix $A = \begin{bmatrix} -1 & 0 & 1 & 0 \\ -1 & -1 & 5 & 1 \end{bmatrix}$.
- (a) Compute the QR-factorization for the matrix A^T (not A itself).
- (b) Compute $P_S(\mathbf{x})$, the orthogonal projection onto S for the vector $\mathbf{x} = (2, 2, 2, 4)$.
- 9. Let V be an inner product space, and let **v** be a vector in V, $\mathbf{v} \neq 0$, and consider the map $P: V \to V$, $P(\mathbf{x}) = \mathbf{x} \frac{\langle \mathbf{x}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}$.
- (a) Compute P(1, 0, 1) for $\mathbf{v} = (1, 1, 2)$.
- (b) Show that $P(\mathbf{x})$ is in the orthogonal complement of \mathbf{v} for any choice of vectors \mathbf{x} and \mathbf{v} .
- 10. Let x be an eigenvector of the matrix A with eigenvalue 1, and let y be an eigenvector of A with eigenvalue 2. Moreover, assume that ||x|| = 1 = ||y|| and that ⟨x, y⟩ = 0.
 (a) Compute ||v|| for v = x + 2y.
 (b) Compute ||Av||, with v as in (a).
- 11. Find an orthonormal basis of the orthogonal complement of the vector [1, 1, 2] in \mathbb{R}^3 .