RECYCLED PROBLEMS FROM OLD EXAMS

1. Let $\mathcal{B}=\{(1,0,0)(3,2,1),(0,0,2)\}$. You can assume that \mathcal{B} is a basis for \mathbf{R}^{3}.
(a) Which vector \mathbf{x} has the coordinate vector $[\mathbf{x}]_{\mathcal{B}}=(1,-1,2)$.
(b) Determine the coordinate vector of $\mathbf{y}=(2,-2,3)$.
2. Compute the dimension of the span of the vectors $(1,4,3),(1,2,1)$ and $(1,1,0)$.
3. Compute the singular value decomposition for the matrix $A=\left[\begin{array}{cc}2 & 1 \\ -2 & 2\end{array}\right]$
4. Find all eigenvectors with eigenvalue 1 of the matrix $A=\left[\begin{array}{ccc}2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2\end{array}\right]$.
5. Find all possible values for x and y such that the matrix $A=\left[\begin{array}{cc}0.6 & x \\ y & 0.6\end{array}\right]$ is an orthogonal matrix.
6. Find a good approximation for the vector $\left[\begin{array}{ll}.8 & .6 \\ .2 & .4\end{array}\right]^{n}\left[\begin{array}{l}2 \\ 2\end{array}\right]$ for n very large (say $n=$ 100).
7. Let $L: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be a linear map with eigenvectors $(1,3,2)$ (with eigenvalue 1) and $(2,1,4)$ (with eigenvalue 2). What is $L(0,5,0)$?
8. Let S be the row space of the matrix $A=\left[\begin{array}{cccc}-1 & 0 & 1 & 0 \\ -1 & -1 & 5 & 1\end{array}\right]$.
(a) Compute the $Q R$-factorization for the matrix A^{T} (not A itself).
(b) Compute $P_{S}(\mathbf{x})$, the orthogonal projection onto S for the vector $\mathbf{x}=(2,2,2,4)$.
9. Let V be an inner product space, and let \mathbf{v} be a vector in $V, \mathbf{v} \neq 0$, and consider the $\operatorname{map} P: V \rightarrow V, P(\mathbf{x})=\mathbf{x}-\frac{\langle\mathbf{x}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v}$.
(a) Compute $P(1,0,1)$ for $\mathbf{v}=(1,1,2)$.
(b) Show that $P(\mathbf{x})$ is in the orthogonal complement of \mathbf{v} for any choice of vectors \mathbf{x} and v.
10. Let \mathbf{x} be an eigenvector of the matrix A with eigenvalue 1 , and let \mathbf{y} be an eigenvector of A with eigenvalue 2 . Moreover, assume that $\|\mathbf{x}\|=1=\|\mathbf{y}\|$ and that $\langle\mathbf{x}, \mathbf{y}\rangle=0$.
(a) Compute $\|\mathbf{v}\|$ for $\mathbf{v}=\mathbf{x}+2 \mathbf{y}$.
(b) Compute $\|A \mathbf{v}\|$, with \mathbf{v} as in (a).
11. Find an orthonormal basis of the orthogonal complement of the vector $[1,1,2]$ in \mathbf{R}^{3}.
