1. Compute the following double integrals:
(a) $\int_{1}^{2} \int_{0}^{1}(1+4 x y) d x d y$
(b) Integrate the function $f(x, y)=2-x-2 y$ over the region D bounded by the line $y=x-1$ and by the parabola $y^{2}=2 x+6$. (hint: compute the intersections between the line and the parabola, and draw a picture of the region D).
2. Compute the area of the following surfaces:
(a) The part of the plane $2 x+5 y+z=10$ which lies in the first octant $x \geq 0, y \geq 0$ and $z \geq 0$.
(b) The part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the $x y$-plane.
(c) The part of the hyperbolic paraboloid $z=y^{2}-x^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
(d) The part of the sphere $x^{2}+y^{2}+z^{2}=4$ which lies above the cone $z^{2}=x^{2}+y^{2}$.
3. Use the given transformation to evaluate the following integral:
(a) $\iint_{R} \ln \left(x^{2}+y^{2}\right) d A$, where R is the region between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=9$ using polar coordinates $x=\rho \cos \theta$ and $y=\rho \sin \theta$.
(b) $\iint_{R} x d A$, where R is the region bounded by the ellipse $9 x^{2}+4 y^{2}=36$ with $x=2 u$ and $y=3 v$.

Important formulas:
Surface area of surface given by parametrization $\Phi(u, v)$ with (u, v) in a given domain D :

$$
\text { area }=\iint_{D}\left|\Phi_{u} \times \Phi_{v}\right| d u d v
$$

Integral of a function f over a parametrized surface S :

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(\Phi(u, v))\left|\Phi_{u} \times \Phi_{v}\right| d u d v
$$

Integral of a vector field \mathbf{F} over a parametrized surface S :

$$
\iint_{S} \mathbf{F}(x, y, z) d \mathbf{S}=\iint_{D} \mathbf{F}(\Phi(u, v)) \cdot\left(\Phi_{u} \times \Phi_{v}\right) d u d v
$$

Change of variable formula: See Section 15.6 (page 880) in the Shenk hand-out (downloadable as a pdf file) listed under 'Texts' on the course webpage, or look it up in Stewart, Section 15.9.

