MATH 110 MIDTERM WINTER 2010

Please justify all your steps!

- 1. (a) Find the general solution of the transport equation $u_x + 2xe^y u_y = 0$. (b) Find the particular solution of (a) satisfying $u(x, 0) = x^2$. (c) Extra Credit: Find the general solution of $u_x + 2xe^y u_y = x$ (Hint: Consider solutions of the form u(x,t) = h(x) + k(y).
- 2. Consider the wave equation $u_{tt} = u_{xx}$ for $-\infty < x < \infty$ with the initial conditions u(x,0) = 0 and $u_t(x,0) = \psi(x)$, where

$$\psi(x) = \begin{cases} 1 & \text{if } |x| \le 1\\ 0 & \text{if } |x| > 1. \end{cases}$$

(a) Calculate u(0,t) explicitly for all t > 0 for the solution u(x,t) of the just stated wave equation.

- (b) Show that $\lim_{t\to\infty} u(x,t) = 1$ for all $x, -\infty < x < \infty$. (c) What is $\lim_{t\to\infty} E(t)$, where $E(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_x(x,t)^2 + u_t(x,t)^2 dx$?
- 3. Consider the heat equation $u_t = k u_{xx}$ with the initial condition $u(x,0) = e^{-x^2}$ for $-\infty < x < \infty$.
 - (a) Write down the solution in terms of an integral. Do NOT solve the integral.

(b) Prove that the integral in (a) is equal to $(4kt+1)^{-1/2}e^{-x^2/(4kt+1)}$ (*Hint* : There is a shorter way than actually calculating the integral).

(c) Extra Credit: Now consider the same initial value problem as in (a) on the half line $0 \le x < \infty$. Solve it either with the boundary condition u(0,t) = 0 or with the boundary condition $u_x(0,t) = 0$ for all t > 0 in each case (One case is easier than the other one).