MATH 110 MIDTERM WINTER 2010

Please justify all your steps!

1. (a) Find the general solution of the transport equation $u_{x}+2 x e^{y} u_{y}=0$.
(b) Find the particular solution of (a) satisfying $u(x, 0)=x^{2}$.
(c) Extra Credit: Find the general solution of $u_{x}+2 x e^{y} u_{y}=x$ (Hint: Consider solutions of the form $u(x, t)=h(x)+k(y))$.
2. Consider the wave equation $u_{t t}=u_{x x}$ for $-\infty<x<\infty$ with the initial conditions $u(x, 0)=0$ and $u_{t}(x, 0)=\psi(x)$, where

$$
\psi(x)= \begin{cases}1 & \text { if }|x| \leq 1 \\ 0 & \text { if }|x|>1\end{cases}
$$

(a) Calculate $u(0, t)$ explicitly for all $t>0$ for the solution $u(x, t)$ of the just stated wave equation.
(b) Show that $\lim _{t \rightarrow \infty} u(x, t)=1$ for all $x,-\infty<x<\infty$.
(c) What is $\lim _{t \rightarrow \infty} E(t)$, where $E(t)=\frac{1}{2} \int_{-\infty}^{\infty} u_{x}(x, t)^{2}+u_{t}(x, t)^{2} d x$?
3. Consider the heat equation $u_{t}=k u_{x x}$ with the initial condition $u(x, 0)=e^{-x^{2}}$ for $-\infty<x<\infty$.
(a) Write down the solution in terms of an integral. Do NOT solve the integral.
(b) Prove that the integral in (a) is equal to $(4 k t+1)^{-1 / 2} e^{-x^{2} /(4 k t+1)}$ (Hint : There is a shorter way than actually calculating the integral).
(c) Extra Credit: Now consider the same initial value problem as in (a) on the half line $0 \leq x<\infty$. Solve it either with the boundary condition $u(0, t)=0$ or with the boundary condition $u_{x}(0, t)=0$ for all $t>0$ in each case (One case is easier than the other one).

