
MATH 110 MIDTERM SOLUTIONS

1. We obtain the characteristic curves by solving the differential equation

y′ =
y

x
.

Separating variables, we obtain
∫

1
y dy =

∫
1
x dx, from which we deduce log y =

log x+ c̃. Exponentiating and setting c = ec̃, we see that the characteristic curves are
given by

y = cx,

i.e. lines going through the origin. Moreover, we obtain c = y/x. Hence the general
solution of the transport equation is given by

u(x, y) = f(c) = f(y/x),

for f a differentiable function. To determine f in our case, we observe that

x2 = f(x, 1) = f(1/x).

Hence f(c) = 1/c2 in our case, and hence the solution of our problem is given by

u(x, y) = x2/y2.

2. (a) The general solution of the wave equation for c = 1 is given by

u(x, t) =
1

2
[φ(x+ t) + φ(x− t) +

1

2

∫ x+t

x−t
ψ(y) dy.

We then obtain for u(1, 3/2) the value

u(1, 3/2) =
1

2
[φ(5/2) + φ(−1/2)] +

1

2

∫ 5/2

−1/2
ψ(y) dy =

=
1

2
[0− 1/2 +

∫ 1

−1/2
1 dy] =

1

2
.

(b) We can use the same formula for the solution v(x, t) with Neumann boundary
condition, provided we substitute φ and ψ by φev and ψev respectively. We see that
ψ = ψev is even, while φev(x) = |φ(x)| in our case. Plugging this into the solution
formula for v(1, 3/2), we see that

v(1, 3/2) =
1

2
[0 + 1/2 +

∫ 1

−1/2
1 dy] = 1.



Remark : Originally, you were given the problem for calculating the functions u(1, 1/2)
and v(1, 1/2). In this case, both solutions were equal to 1/2.

3. Setting λ = β2, we obtain for the differential equation X ′′ + β2X = 0 the general
solution

X(x) = A cosβx+B sinβx.

As u(x, t) = X(x)T (t), we obtain

0 = u(0, t) = X(0)T (t) = (A cos 0 +B sin 0)T (t) for all t.

We can assume that T (t) is not the zero function (as otherwise u(x, t) would be zero
for all x, t, which is not an interesting solution). Hence we have

0 = (A cos 0 +B sin 0) = A,

i.e. we can assume X(x) = sinβx. The second boundary condition ux(`, t) = 0
similarly translates to

0 = X ′(`) = β cosβ`.

As the zeros of cos are at (n+ 1
2 )π, we obtain

β` = (n+
1

2
)π,

from which we can calculate β as it is claimed.

(b) It follows from u(x, t) = X(x)T (t) and the separation of variables that

T ′

kT
=
X ′′

X
= −λ = −β2 = −[(n+

1

2
)π/`]2.

Hence we get the differential equation T ′ = −k[(n+ 1
2 )π/`]2T which has the solution

T (t) = e−k[(n+
1
2 )π/`]

2t.

We obtain the series solution

∞∑
n=0

An sin[(n+
1

2
)πx/`] e−k[(n+

1
2 )π/`]

2t.

(c) (sketch) As | sin y| ≤ 1 for all y, we have

| sin[(n+
1

2
)πx/`] e−k[(n+

1
2 )π/`]

2t| ≤ |e−k[(n+ 1
2 )π/`]

2t| → 0, for t→∞.

Then also finite sums of such functions will go to 0 if t goes to infinity. This solves
the problem in the special case if only A0 and A1 are not equal to 0. The case for a
general series is more complicated to prove. But also in this case the solution will go
to 0 if t→∞.


