MATH 110 MIDTERM SOLUTIONS

1. We obtain the characteristic curves by solving the differential equation

$$
y^{\prime}=\frac{y}{x}
$$

Separating variables, we obtain $\int \frac{1}{y} d y=\int \frac{1}{x} d x$, from which we deduce $\log y=$ $\log x+\tilde{c}$. Exponentiating and setting $c=e^{\tilde{c}}$, we see that the characteristic curves are given by

$$
y=c x
$$

i.e. lines going through the origin. Moreover, we obtain $c=y / x$. Hence the general solution of the transport equation is given by

$$
u(x, y)=f(c)=f(y / x)
$$

for f a differentiable function. To determine f in our case, we observe that

$$
x^{2}=f(x, 1)=f(1 / x)
$$

Hence $f(c)=1 / c^{2}$ in our case, and hence the solution of our problem is given by

$$
u(x, y)=x^{2} / y^{2}
$$

2. (a) The general solution of the wave equation for $c=1$ is given by

$$
u(x, t)=\frac{1}{2}\left[\phi(x+t)+\phi(x-t)+\frac{1}{2} \int_{x-t}^{x+t} \psi(y) d y\right.
$$

We then obtain for $u(1,3 / 2)$ the value

$$
\begin{aligned}
u(1,3 / 2)= & \frac{1}{2}[\phi(5 / 2)+\phi(-1 / 2)]+\frac{1}{2} \int_{-1 / 2}^{5 / 2} \psi(y) d y= \\
& =\frac{1}{2}\left[0-1 / 2+\int_{-1 / 2}^{1} 1 d y\right]=\frac{1}{2}
\end{aligned}
$$

(b) We can use the same formula for the solution $v(x, t)$ with Neumann boundary condition, provided we substitute ϕ and ψ by $\phi_{e v}$ and $\psi_{e v}$ respectively. We see that $\psi=\psi_{e v}$ is even, while $\phi_{e v}(x)=|\phi(x)|$ in our case. Plugging this into the solution formula for $v(1,3 / 2)$, we see that

$$
v(1,3 / 2)=\frac{1}{2}\left[0+1 / 2+\int_{-1 / 2}^{1} 1 d y\right]=1
$$

Remark: Originally, you were given the problem for calculating the functions $u(1,1 / 2)$ and $v(1,1 / 2)$. In this case, both solutions were equal to $1 / 2$.
3. Setting $\lambda=\beta^{2}$, we obtain for the differential equation $X^{\prime \prime}+\beta^{2} X=0$ the general solution

$$
X(x)=A \cos \beta x+B \sin \beta x
$$

As $u(x, t)=X(x) T(t)$, we obtain

$$
0=u(0, t)=X(0) T(t)=(A \cos 0+B \sin 0) T(t) \quad \text { for all } t
$$

We can assume that $T(t)$ is not the zero function (as otherwise $u(x, t)$ would be zero for all x, t, which is not an interesting solution). Hence we have

$$
0=(A \cos 0+B \sin 0)=A
$$

i.e. we can assume $X(x)=\sin \beta x$. The second boundary condition $u_{x}(\ell, t)=0$ similarly translates to

$$
0=X^{\prime}(\ell)=\beta \cos \beta \ell
$$

As the zeros of cos are at $\left(n+\frac{1}{2}\right) \pi$, we obtain

$$
\beta \ell=\left(n+\frac{1}{2}\right) \pi
$$

from which we can calculate β as it is claimed.
(b) It follows from $u(x, t)=X(x) T(t)$ and the separation of variables that

$$
\frac{T^{\prime}}{k T}=\frac{X^{\prime \prime}}{X}=-\lambda=-\beta^{2}=-\left[\left(n+\frac{1}{2}\right) \pi / \ell\right]^{2}
$$

Hence we get the differential equation $T^{\prime}=-k\left[\left(n+\frac{1}{2}\right) \pi / \ell\right]^{2} T$ which has the solution

$$
T(t)=e^{-k\left[\left(n+\frac{1}{2}\right) \pi / \ell\right]^{2} t}
$$

We obtain the series solution

$$
\sum_{n=0}^{\infty} A_{n} \sin \left[\left(n+\frac{1}{2}\right) \pi x / \ell\right] e^{-k\left[\left(n+\frac{1}{2}\right) \pi / \ell\right]^{2} t}
$$

(c) (sketch) As $|\sin y| \leq 1$ for all y, we have

$$
\left|\sin \left[\left(n+\frac{1}{2}\right) \pi x / \ell\right] e^{-k\left[\left(n+\frac{1}{2}\right) \pi / \ell\right]^{2} t}\right| \leq\left|e^{-k\left[\left(n+\frac{1}{2}\right) \pi / \ell\right]^{2} t}\right| \rightarrow 0, \quad \text { for } t \rightarrow \infty
$$

Then also finite sums of such functions will go to 0 if t goes to infinity. This solves the problem in the special case if only A_{0} and A_{1} are not equal to 0 . The case for a general series is more complicated to prove. But also in this case the solution will go to 0 if $t \rightarrow \infty$.

