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1. (a) The characteristic curves satisfy ODE

dy

dx
= 2xey

Separating variables and integrating, we obtain∫
e−y dy =

∫
2x dx

Then −e−y = x2+C or −C = x2+e−y. Thus, the general solution to our equation
is u(x, y) = f(x2 + e−y) (for arbitrary differentiable f).

(b) We have u(x, 0) = f(x2 + 1), and we want this to equal x2. Thus, we choose
f(s) = s− 1, and our particular solution is then u(x, y) = x2 + e−y − 1.

(c) Suppose u(x, y) = h(x) + k(y) and plug in to the equation. This gives

h′(x) + 2xeyk′(y) = x

Rearranging terms gives us

h′(x)− x
2x

= −eyk′(y)

However, the left hand side depends only on x whereas the right hand side depends
only on y. Thus, both must be equal to some constant λ. This in turns gives us
the pair of ODEs

h′(x) = (2λ+ 1)x

k′(y) = −λe−y

with particular solutions h(x) = (λ + 1
2
)x2 = λx2 + 1

2
x2 and k(y) = λe−y. Thus,

a particular solution to our equation is 1
2
x2 + λ(x2 + e−y). We conclude that the

general solution to the inhomogeneous equation is

u(x, y) = 1
2
x2 + f(x2 + e−y)

where f is any differentiable function (since the λ(x2 +e−y) term can be absorbed
into f).



2. (a) We have u(x, t) = 1
2

∫ x+t

x−t
ψ(s) ds, so it follows that u(0, t) = 1

2

∫ t

−t
ψ(s) ds. Note

that the value of the integral is the length of the intersection of (−t, t) and (−1, 1).
So if 0 < t ≤ 1, we get 1

2
(t − (−t)) = t, but if t > 1, we get 1

2
(1 − (−1)) = 1.

Summarizing, we have

u(0, t) =

{
t 0 < t ≤ 1

1 t > 1

(b) Fix any x ∈ (−∞,∞). Note that u(x, t) = 1
2

∫ x+t

x−t
ψ(s) ds. The value of this

integral is equal to the length of the intersection of (x − t, x + t) and (−1, 1).
However, for t sufficiently large (to be exact: t > max{x+1,−x+1}) the interval
(x− t, x+ t) contains (−1, 1) so we get

lim
t→∞

u(x, t) =
1

2
(1− (−1)) = 1

(c) We know that the energy E(t) is conserved for the wave equation. In particular,

lim
t→∞

E(t) = E(0) =
1

2

∫ ∞

−∞
ux(x, 0)2 + ut(x, 0)2 dx =

1

2

∫ ∞

−∞
ψ(x)2 dx = 1

3. (a)

u(x, t) =
1√

4πkt

∫ ∞

−∞
e−y2

e−
(x−y)2

4kt dy

(b) Define

v(x, t) =
1√

4kt+ 1
e−

x2

4kt+1

Taking derivatives shows that vt = kvxx so v(x, t) satisfies the heat equation.
Furthermore, we have v(x, 0) = e−x2

. Thus, by uniqueness, we have v(x, t) =
u(x, t) from (a) which is the desired result.

(c) The easier case is the one with the Neumann condition ux(0, t) = 0. To solve
this, we would have used even reflection. However, our initial data is already even
when considered as a function on the whole line. Therefore our solution formula
remains unchanged and we get

u(x, t) =
1√

4πkt

∫ ∞

−∞
e−y2

e−
(x−y)2

4kt dy for x ∈ [0,∞)


