Math 110A Homework Solutions

C.T. Wildman

4.3.4 Suppose $a_{0}, a_{l}<0$ and $-\left(a_{0}+a_{l}\right)<a_{0} a_{l} l$. Show that there are two negative eigenvalues for the problem $X^{\prime \prime}=-\lambda X$.

Solution:

Following the hint, we define $y(\gamma)=\frac{-\left(a_{0}+a_{l}\right) \gamma}{\gamma^{2}+a_{0} a_{l}}$. Solving the equation $y^{\prime}(\gamma)=0$ and applying the first derivative test, we see that y has a single maximum at $\gamma=\sqrt{a_{0} a_{l}}$. We also observe that $y^{\prime}(0)=\frac{-\left(a_{0}+a_{l}\right)}{a_{0} a_{l}}$. By assumption, this quantity is (strictly) less than l. What this means is that the function $y(\gamma)$ is less steep at the origin than $\tanh (\gamma l)$ (which has slope l at 0).
The next step is to show that $y(\gamma)$ intersects $y=1$ at least once. Therefore we consider the equation $y(\gamma)=1$ and obtain

$$
\gamma^{2}+\left(a_{0}+a_{l}\right) \gamma+a_{0} a_{l}=0
$$

which has 2 solutions if $a_{0} \neq a_{l}$ and 1 solution if $a_{0}=a_{l}$. In either case, we know that $\tanh (\gamma l)<1$ for all γ, so since $\lim _{\gamma \rightarrow \infty} y(\gamma)=0$ and $\lim _{\gamma \rightarrow \infty} \tanh (\gamma l)=1$, we see that $y(\gamma)$ must intersect $\tanh (\gamma l)$ twice: $y(\gamma)$ is less steep at 0 , but it touches $y=1$ and then comes back down to 0 , whereas $\tanh (\gamma l)$ is steeper at 0 but increases to 1 .
Thus, there are two solutions to $y(\gamma)=\tanh (\gamma l)$, i.e. two negative eigenvalues.

