Please justify all your steps!

1. Let $A=\left[\begin{array}{cccc}1 & 2 & 4 & 3 \\ 2 & 4 & 9 & 7 \\ 3 & 6 & 11 & 8\end{array}\right]$.
(a) Calculate bases for the null space and for the column space of A.
(b) Calculate the general solution of $A \mathbf{x}=\mathbf{b}$ for $\mathbf{b}=(2,5,5)^{T}$.
(c) Describe the column space of A via linear equation(s) and find a vector \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ has no solution.
2. Let A be a 4×3 matrix whose columns are linearly independent.
(a) What is the rank of A and what is the dimension of its null space?
(b) The equation $A \mathbf{x}=\mathbf{b}$ always has at least one solution, for any vector $\mathbf{b} \in \mathbf{R}^{4}$.

True or false? Why or why not?
(c) The equation $A \mathbf{x}=\mathbf{b}$ has at most one solution, for any vector $\mathbf{b} \in \mathbf{R}^{4}$. True or false? Why or why not?
3. Let $\mathbf{a}_{1}=(1,1,1,1)^{T}, \mathbf{a}_{2}=(3,1,1,3)^{T}$ and $\mathbf{a}_{4}=(4,0,-2,2)^{T}$.
(a) Find an orthogonal basis for $\operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$.
(b) Let A be the 4×3 matrix with column vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$. Find an orthogonal matrix Q and an upper triangular matrix R such that $A=Q R$.
(c) Let $\mathbf{b}=(6,0,2,0)^{T}$. Find the projection of \mathbf{b} onto the span of \mathbf{a}_{1} and \mathbf{a}_{2}.
(d) Let $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right\}$ be the orthogonal basis obtained in (a). Then it can be extended to an orthogonal basis for \mathbf{R}^{4} by taking a suitable vector \mathbf{q}_{4} from the null space of A^{T}. True or false? Why or why not? If true, how many such vectors would there be?
4. Let A be a 3 x 3 matrix satisfying $A\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$ and $A\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$. Compute $A\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$.

