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Abstract

In real semialgebraic geometry it is common to represent a polyno-
mial ¢ which is positive on a region R as a weighted sum of squares.
Serious obstructions arise when ¢ is not strictly positive on the re-
gion R. Here we are concerned with noncommutative polynomials and
obtaining a representation for them which is valid even when strict
positivity fails.

Specifically, we treat a ”symmetric” polynomial ¢(z, k) in noncom-
muting variables {z1,...,24,} and {hq,..., hy, } for which ¢(X, H) is
positive semidefinite whenever

X =(X1,...,X,,) and H=(Hy,... H,,)

are tuples of selfadjoint matrices with || X;|| < 1 but H; unconstrained.
The representation we obtain is a Gram representation in the variables
h

q(z,h) = V()[h]" Py(2)V (2)[h],

where P, is a symmetric matrix whose entries are noncommutative
polynomials only in z and V' is a " vector” whose entries are polynomials
in both x and h. We show that one can choose P, such that the matrix
P,(X) is positive semidefinite for all || X;|| < 1. The representation
covers sum of square results ([H],[M],[MP]) when g, = 0. Also it allows
for arbitrary degree in h rather than degree two in the main result of
[CHSY] when it is restricted to z-domains of the type || X;|| < 1.

*Partially supported by NSF, DARPA and Ford Motor Co.
TPartially supported by NSF grant DMS-0140112
tPartially supported by NSF grant DMS-0100367



1 Introduction

Let A denote the algebra over R of polynomials in the noncommuting vari-
ables z := {z1,...,24,} and h:= {h1,..., hg, }. An element of N is thus a
real finite linear combination of words in x and h and is called a noncommu-
tative polynomial (abbreviated NC polynomial). Given integers M and N,
let Narn denote the set of noncommutative polynomials in N which have
degree at most M in z and at most N in h. For example,

p(:C, h) = ﬂjlhgl‘g + 51:2x1h2x1

is a polynomial in N3 1.
The natural involution 7 on A defined by

w:zl...anwT:zn-~-22z1

for w a word in {z,h} and

q:quwENHqT:quwT

fixes Nar,n. Here each z; € {z1,...,24,,h1,...,hg, }. A polynomial ¢ in N/
is symmetric provided ¢7 = ¢. For example,

p(.’L‘, h) = $1h2$3 + 5$2$1h1$1 + $3h21‘1 + 5z1h1x1x2 (1)

is a symmetric polynomial in N3 ;.

Let B(H) denote the collection of bounded linear operators on the real
Hilbert space H. Given tuples X = (X1,...,X,,) and H = (Hy,...,Hy,)
of, not necessarily commuting, selfadjoint operators from B(H) and p € N,
define p(X, H) € B(H) in the natural way by substitution. For instance, for
the polynomial p in (1),

p(X, H) =X1Hy X3+ 5Xo X1 H 1 X1 + X3Ho X1 +5X1H1 X1Xo.

The main result of this paper is a representation theorem for symmetric
polynomials ¢ € N such that (X, H) > 0 for all tuples X and H of self-
adjoint operators on a common Hilbert space, with each X a contraction,
| X;|l < 1. Here, and throughout the present article, || A|| refers to the oper-
ator norm of A € B(H) and A positive semidefinite, denoted A > 0, means
A= AT and < Ah,h >> 0 for all h € H.

The evaluation map p € N — p(X,H) € B(H) determines a map-
ping from M, (N), the n x n matrices with entries from N, into B(®}H) =



M, (B(H)) by evaluating entry-wise. If M = (m;x) € M, (N), then M (X, H) =
(m (X, H)).

All the definitions and the notation make sense in the case g, = 0, that
is, where the polynomials depend on the variable x only. In this case we
write N, instead of A. The involution 7" extends to matrix polynomials
M = (mjg)}ry € Ma(Ny) as MT = (mz,j)?,kzl and M is symmetric if
MT = M. In the case M(x) is symmetric, we say M is semipositive
(resp. semipositive on the noncommutative polydisk) if M(X) > 0
for all tuples X of selfadjoint operators (resp. for selfadjoint contractions,
1, < 1).

A symmetric polynomial ¢ € A/ has a Gram Representation in h

a(z,h) = V(@)[h]" Py(x)V (2)[h], (2)
where the tautological vector V(z)[h] has the form

e
hiw}

1
hlwzl

k

k

Here wj- € N, e = 0 is the identity for N, and P, is a symmetric matrix
whose entries are noncommutative polynomials in z.
For example, the polynomial p from (1) has the Gram representation in

h,
0 T1 DT2T1 €
p= (e xzshy x1hy ) x1 0 0 has
5$1x2 O 0 hlxl
and
0 r1 Drox1 —I1 €
_ ) 2 1 0 0 0 has
p= (e wz3hy xhy x:1h}) S5xiz9 0 2 0 hyxq
2 00 0 hiw

Note that if there is a P, for which P,(X) is semipositive for all X in
the noncommutative polydisk, then ¢(X,H) > 0 for all tuples X and H



of selfadjoint operators on a common Hilbert space for which each X; is a
contraction, || X;|| < 1. A corollary of our main theorem is the converse.

Theorem 1.1 Suppose q(x,h) is a symmetric NC polynomial in the vari-
ables x and h. If (X, H) > 0 for all selfadjoint tuples X = (X1,...,Xg,)
and H = (Hi,...,Hyg,) acting on finite dimensional (real) Hilbert space
where each X is a contraction, || X;|| < 1, then q has the Gram representa-
tion (3) with a symmetric P, which is semipositive on the noncommautative
polydisk.

Our main result, Theorem 2.2 refines Theorem 1.1 above by adding pre-
cise degrees for the factors in the Gram representation in h. Its proof uses
a Hahn-Banach separation argument and a Gelfand Naimark Segal type
construction! similar to that found in the proof of the (commutative) Posi-
tivstellensatz of [PV].

In the special case where ¢ does not depend on x, Theorem 1.1 says that
every semipositive noncommutative polynomial has the form

q(h) = V[h]" PV [h]

for some positive semidefinite matrix P not depending on z. A positive
semidefinite matrix P can be factored as P = LT L which yields that ¢ can
be written as a sum of squares. Thus Theorem 1.1 yields results much like
those in [H], [M], and [MP].

When ¢(z,h) = Q(x) € M,(N,) is a matrix valued polynomial which
does not depend upon h, the NC Positivstellensatz in [HM] says that if @
is strictly positive on the polydisk, Q(X) > 0 for all tuples X of selfadjoint
contractions, then @) has a weighted sum of squares (SoS) representation.
Indeed, this NC Positivstellensatz is key in the proof of Theorem 1.1. In
fact, there are many noncommutative domains which work equally as well as
the noncommutative polydisk. For instance, Q(X, H) is strictly positive
on the noncommutative ball if Q(X, H) > 0 whenever X is a tuple of
selfadjoint operators satisfying I — ) XJ2 > 0 and H is a tuple of selfadjoint
operators. If P(X) is strictly positive on the noncommutative ball, then
P has a weighted sum of squares representation and the arguments in this
paper show that if Q(X, H) is strictly positive on the noncommutative ball,
then Q = V7T (x)[h]P(x)V (x)[h] for some P which is positive semidefinite on
the noncommutative ball.

Lthis represents an abstract C*-algebra as an algebra of bounded operators on a Hilbert
space.



While we emphasize that strict positivity makes behavior nicer and is
required in general in NC possitivstellensatz, there are situations where it
is not required. A tuple X = (Xi,...,X,,) is a spherical isometry if
ZXJTX]- = I, where the X; are not necessarily selfadjoint, and the poly-
nomials below are polynomials in both z; and a:f The result [HMP] says,
if P(X) > 0 for all X which are spherical isometries, then there is a NC
polynomial S which is a SoS of polynomials such that

P(X) = S(X) for all spherical isometries X.

Thus, results in this paper and [HMP] suggest, if ¢(X, H) is positive semidef-
inite whenever X is a spherical isometry and H is arbitrary, then ¢ = s+,
where s is a sum of squares and r residual part r(x,h) which vanishes on
spherical isometries, that is, r(X, H) = 0 when X is a spherical isometry so
that (X, H) = s(X, H).

Returning to the mixed case, when ¢(z,h) is semipositive on the non-
commutative polydisk and homogeneous of degree two in h, Corollary 1.1
contains a major piece of the principal result of [CHSY].

2 Notation and Main Result

Before stating the main result, we first formalize the notation used in the
introduction.

2.1 Notation

Since the x and h variables play asymmetric roles, they are treated sepa-
rately, rather than simply considering g, + g, noncommutative variables. Let
F denote the free semigroup on the alphabet {x, h} = {x1,...,24,,h1,..., Ry, },
that is, all words in these letters. The empty word, (), plays the role of the
multiplicative identity, as Qw = wl) = w for w € F. For given nonnegative
integers M and N, let Fy n denote words in these variables of length at
most M in x and N in h.

The noncommutative polynomials A" can be thought of as the free semi-
group real algebra on the alphabet {x, h}. Concretely, an element p of N is
an expression of the form,

b= Z Puww, (4)

weF
where the sum is finite, and is called a polynomial, or NC polynomial, in
{z,h}. The empty word is the multiplicative identity and the empty sum, 0,



is the additive identity for N'. Let N n denote the real vector space with
basis Fpsn. Equivalently, Njs n is the subset of N consisting of those p as
in (4) where the sum is over words w € Fys N
Let
Fvy=I= {@} U (U?hz'lhij7N_1)7

that is, I consists of the empty word and those words in Fjs ny which start
with some h;. Let |I'| denote the cardinality of I We will use I' as an
index set. For example, let N, 1\1;[ n denote the collection of vectors of length
IT| with entries from AN/, so that an element W € N1, \ is a function
W:T — N m,n thought of as a column vector where the w-th entry is W,
for w e I

The tautological vector Viy ny =V = V(x)[h] of (3) (see [CHSY], where
it is called the border vector ), which plays a key role in our Gram represen-
tation in h, is the element of N ]1\} n Whose w € I entry is w. Here we use
V to denote Vis, v with the choice of M , N understood from the context. In
what follows, it will be convenient to decompose Vi n as

_ N J _ N j
VM,N - @jZOVM,N - @jzov )

where each V7 is homogeneous of degree j in h. For instance, V° = (§)) and
V! consists of vectors of the form (3) with all words w! independent of h
and without the e = () term, that is, wf is in Far0, and V' contains no e
term. Thus, with I'g = {0} and

I'y={hw:1<¢<gp, v hasdegree j—11in h},

the vector VJ can be viewed as either the element of A ]1\:[3 N With w € T

entry equal to w; or as the element of A/ ]\1} N With w-entry w if w, has degree
j in h and 0 otherwise.

Let Mp(Na,n) denote the collection of |T'| x |I'| matrices with entries
from Ny n indexed by I'. Explicitly, P € M (N n) is a |T'| x |I'| matrix
with (heo, ey B) entry Pp,on,p for 1 < ¢,m < g and o, 8 € Farn—1,
(0, hyB) entry Pyyp, g for 1 < m < gy and € Fyn-1, and Py the
(0,0) entry. Let P’ denote the submatrix (Ph,a.p,,3) over those «,f €
Fum,n—1 which have degree precisely j — 1 in h; here hy and h,, range over
all possibilities. Let P%% = Py 4. Thus, if we let n; denote the cardinality of
the set of o € Fps n—1 of degree j — 1 in h, then PJJ is an n; X n; matrix
with entries ng%, where a, 3 are of the form a = h,,/, 3 = hyf3’ for some
¢, m or empty hy, hy, and o/, 3" € Fprny—1 of degree exactly j — 1 in h. In



a similar manner, define P7* for j # k. With these definitions we have, for
any P in Mp,

VIPY = ) (V)T pikyk

7.k
= Z Z OéThZPhéa,hmﬁhmﬂ + Z P@,hm,ﬁhmﬂ (5)

£m o,BEF M N1
+> o hePrap+ P,

where V' =V n.

Definition 2.1 Let Py n denote those P € Mp(Ny) such that

1. P(X) > 0 for each tuple X = (X1,...,Xg,) of (not necessarily com-
muting) contractions on a (common) Hilbert space H;

2. Ppn,ahmp has degree at most 2M minus the sum of the degrees of o and
B in x for hya, hy,B € T' so that the degree of aTthhZa’hmghmﬁ s at
most 2M in x; and

3. Py, and Py, 3 have degree at most 2M minus the degree of o in x
and 2M minus the degree of 3 in x respectively, and Py g has degree
at most 2M .

Let Cpr,n denote the set of polynomials with a Gram representation in
h of appropriate dimension, namely,

CM,N = {V]\?NPVM’N :Pe PM,N} (6)

and let C denote the union of all the Cys n. Note that if ¢ € C and X and
H are tuples of selfadjoint operators on a real Hilbert space and each X is
a contraction, then ¢(X, H) > 0.

2.2 Main result

Theorem 2.2 Suppose q(x,h) is a symmetric NC' polynomial in the self-
adjoint variables x and h. If ¢(X,H) > 0 for all selfadjoint tuples X =
(X1,...,Xy,) and H = (Hy,...,Hy,) acting on a finite dimensional (real)
Hilbert space where each X is a contraction, || X;|| <1, then g € C. In fact,
ifq € NM,QN, then q € CM,N-



With some additional care, an upper bound on the dimension of the
Hilbert spaces required in Theorem 2.2 can be given.

We note that, in the case that item (1) of Definition 2.1 is replaced by
P(X) > 0 there is a representation for P, found in [MP], much like Stengle’s
Positivstellensatz in the commutative case [St].

3 Components of the proof

3.1 Some first words about words

Given a polynomial » = Y r,v € Ny n, a word u appears in r provided

ry 7 0.

Lemma 3.1 If o, 3,7, are words of degree j — 1 in h, if v,w are words in
x only, and if
BT hevhga = 67 hpuhy,,

then o =, 8=906,=n, k=m, and uw=v. In particular, if (hyo, he(3) #
(R, hnd), and if p,q € Ny, then the words appearing in BT hgphra are
disjoint from those appearing in 6° hyqhm?y.

Proof. Without loss of generality, assume that the degree of « is at least
as large as that of v, so that there is a word € such that o = ey. Thus,

BT hyvhye = 6T hpuhyy,. (7)

Since the degree in h of the polynomial on the right hand side is j + 1, it
follows that € is a polynomial in x alone. Hence € is the identity (empty
word). [

Lemma 3.2 Ifp € Ny.n, then pT'p € Cory and p* (1 — :c%)p € Cri41,N for
each 1 <k <g,.

Proof. Write p = o + kaﬂpahkﬁahkﬁ, where ag and each o is a
polynomial in z alone and each (8 is a polynomial in both x and h. Let
ThB = 2o Pahyse for 1 < k < gy, let 79 = ag, and let 7 denote the (row)
vector r = (7, 3), indexed by I'as n. Then

rV = Ozo@-l-zrkﬁhkﬁ

= ap+ Z Pahys0hi S
k.G,
= D



where V is the tautological vector of p. Now let R = r’r. As the degree of
rr,hiB is at most M in x, the degree of Ry,s5p,8 = rgﬁm,g is at most 2M
minus the sum of the degrees of 3 and 0 in . Thus, R € Py N, provided
that R(X) > 0 for all tuples X, not just tuples of contractions. This is true
since R is a square. Consequently,

plp=vTTyry (8)
is in Cpz,v. Similarly, rT(1 - x%)r is in Ppr41,v and so
pr(1—ad)p=VTrT(1 —2})rV € Corya N

3.2 Positive functionals, tuples, and the openness condition

In this section we construct, for a given M and N, tuples X and H of selfad-

joint operators with X contractive, such that the evaluation representation
p € Nun — p(X, H) is faithful; that is, if p(X, H) = 0 then p = 0.

Lemma 3.3 Given M and N, there exists a linear functional  : N2M72N —
R such that A(p'p) > 0 for all nonzero p € Ny -

Proof. As in this setting there is no difference between the variables x and
h, we may assume that our polynomials are polynomials in x alone. Let Uy
denote the collection of polynomials in x of degree at most d. Given d, it
suffices to prove that there exists Aoy : Usg — R such that Aog(p’p) > 0
for all nonzero p € Uy.

The strategy is to construct positive definite “Hankel” inner products,
< -,- >4 on Uy, namely ones with the property that < p,q >4 is a function
of ¢Tp only, for p and ¢ in U;. Once this is done, define Aog : Usg — R
by A2q(p) =< p,0 >24 and note, if p € Uy is not zero, then p’p € Uy and
Xoa(pT'p) =< pT'p, 0 >0q=< p,p >24> 0.

The construction of the innerproducts proceeds by induction. We can
define < ¢10, co) >¢= c1ca, on Uy, where ¢q, and co are real constants. Thus
the induction starts. Now suppose that < -,- >; has been defined. Define
< -,- >4+1, depending on a positive constant C', as follows.

<u,v>q  if [oTul < 2d
< U,V >g41=140 if [vTu| =2d +1
Céy if [vTu| = 2d + 2



where 0 denotes the Kronecker symbol. The induction hypothesis implies
< -+ >q4q restricted to Uy is (strictly) positive definite. Hence, there exist
a large enough C so that < -,- >4y (strictly) positive definite on Uz ;.
Now define Aoy : Usg — R by Aog(p) =< p, >4 and note that
Aaa(pTp) =< p,p >4 > 0, as required. (]

Lemma 3.4 Fiz M, N and a linear functional X : N2M72N — R such that
Ap) = M(pT). Let d denote the dimension of Ny -

(a) If A\(pTp) > 0 for all nonzero p € Ny n, then there exists a (real)
Hilbert space H of dimension d with inner product (-,-), a vector v € H, a
tuple X of selfadjoint operators on H and a tuple H of selfadjoint operators
on H such that < p(X, H)vy,7(X, H)y >= X(rlp) for p,r € Ny .n.

(b) If, moreover, A(p) > 0 for p € Car,n, then each X can be chosen a
contraction, || Xg| < 1.

Proof. Let K denote the Hilbert space obtained by introducing the inner
product

<p,q>=Nq"p)

on Ny . The hypothesis on A guarantees there are no null vectors and thus
the dimension of K is d and we may define the following operators. Let H,
denote the set N M—1,nN as a subspace of K and let £, denote the orthogonal
complement of H,. Define Xgp = xxp if p € H, and Xgpp = 0 if p € L,.
Similarly, define Hj, as the set N, M,N—1 and Ly, its orthogonal complement
in I and define Hygp = hip if p € Hp and Hgp =0 if p € L},. Let P, and P
denote the orthogonal projections of K onto H, and Hjy respectively. Let
X, = P.X, P, and Hp = P,H; P, so that X; and Hj, are operators on H,
and Hj, respectively.
For p,r € Hy,

(Xkp,7) (PyXyPrp, )
(zrp,T)
= A(r Til?kp)
= A(zxr)"p) (9)
(p, xpr)
= (p, PeXyPyr)
(p, Xkr).
Thus, each X} is selfadjoint and a similar argument shows that each Hy
is also selfadjoint. Further, if » € Ny, then r(X, H)) = r. Hence, if

10



q € Ny .y also, then
< Q(Xa H)@,T(X,H)@ >=<4q,r >= )‘(rTq)'

To prove (b), let p € H. Thus there is m € H, and n € L, with
p=m + n. Then

IKe@)ll = [Xp(m +n)|
= [XKx(m)]
= [lzem]|
and
Iml|* = zzm|® = A(m* (1 — a3)m) > 0 (10)
as m? (1 —a22)m € Cyr—141,5 by Lemma 3.2. Hence, as || Xi(p)|| = |lzxm| <
Ilm|| < |Ip||, each X} is a contraction; and thus each X}, is a contraction. m

Lemma 3.5 Fiz M and N and let d denote the dimension of J\/M,N.

(a) There exists a (real) Hilbert space H of dimension d, a tuple X =
(X1,...,Xy,) of selfadjoint contractions on H, and a tuple H = (H1, ..., Hg,)
of selfadjoint contractions acting on 'H such that | Xg||> < % and | Hg| < 1
Jor each 1 <k < g, and 1 < k < gy, respectively, and such that if p € Ny n
and p(X,H) =0, then p = 0.

(b) Given M and N, there exists a linear functional p : Napron — R
such that p(p) > 0 whenever p € Cyrn, p(pt) = u(p),
and pu(pp) > 0 for all nonzero p € Nurn. Moreover, p is defined in

terms of the trace so that j1(pq) = p(gp) for p,q € Nn .

Proof. Let A : Naprony — R denote a functional from Lemma 3.3 such
that A(pTp) > 0 for all nonzero p € Ny and let (X, H) denote the tuple
from Lemma 3.4 associated to A. If p € Ny n and P(X,H)y = 0, then
< p(X,H)y,p(X,H)y >= Ap'p) = 0 in which case the hypothesis on A
implies p = 0.

Given t > 0, let pi(x, h) = p(tx,th). In particular, if p € Ny n, then
pt € Nu,n also. Further, p = 0 if and only if p, = 0 for all ¢. Thus, by what
is proved above, if p # 0, then p(X, H)y = p(tX,tH)~y # 0. Choosing t so
that [[tXg| < 3 and [|tHy|| < 1 for all k proves (a).

To prove (b), let X denote a tuple as in part (a) and define p1 : Noprony —
R by p(p) = trace(p(X, H)). Then p is linear; if p € Cpz n, then p(X, H) > 0
so that u(p) > 0; for p € Nopran, we have

p(p") = trace(p” (X, H)) = trace(p(X, H)") = trace(p(X, H)) = u(p);

11



and if p € NM,N and

p(p"p) = trace(p(X)"p(X)) =0,

then p(X) = 0 and so, by (a), p=0. [
Given M and N, define norms || - ||2 and || - || on Nz n, by
I Y pewl3 =) Ipul® (11)
weFn, N
and
Il = sup{|lp(X, H)|| : (X, H) € 11} (12)

where II denotes the collection of tuples (X, H) where X = (X1,...,X,,)
and H = (Hi,...,Hy,) are selfadjoint tuples acting on the same (real)
Hilbert space and || Xy||? < 1 and ||Hg|| < 1. Observe that |[p[/r is finite

and is easily seen to be a seminorm. Item (a) of Lemma 3.5 implies ||p|jg = 0
if and only if p = 0 so that || - || is indeed a norm.

Lemma 3.6 Given M and N, the norms || -||2 and || - ||n are equivalent on
Nurn. That is, for each M and N there exists positive constants KJIW,N and
Kyn such that for all p € Ny n,

Kynllpllz < lIplln < Ky v lplla-

Proof. Both are norms on the finite dimensional (real) vector space Nz n.
]
3.3 Separating ¢ from C

In this section outsiders g ¢ C are separated from C by a linear functional
which is nonnegative on C. The key point is that the cone C is closed. There
is some ambiguity in representing elements in Cps ny as V(x, h)T P(x)V (z, h)
as P € Py, n need not be unique. However, it is possible to bound the norm
(any norm) of the entries of the P which represent a given g.

3.3.1 Bounded P’s

Recall the definitions of P/ given before Definition 2.1.

12



Lemma 3.7 Given M and N, there exists a constant C' such that if q €
Cu,n and if P € Py N is such that g = V]\?NPVM,N, then

1P34 ) < Clllalln + IVagn Varwllm)

for each 1 < j < N and o € Ty N of degree exactly j in h. Also, ||P%C||g <
Clllalln + Vi Varn )

Proof. As for the P%0 term, simply observe that P%0 is the homogeneous
of degree 0 in h part of ¢. In particular, ||P%°||y < ||g||2. In view of Lemma
3.6 there is a constant K such that ||P%°||g < K||q]|m.

Since P(X) > 0 for all selfadjoint tuples X = (Xi,...,X,,) of con-
tractions, results of [HM] imply there exists polynomials Sy and R (matrix
valued) in z such that

P+I=> (S)"(1-2})S+R"R, (13)
k
where [ is the identity (matrix) polynomial. Here, and in what follows
1 < k < g,. Note that the degrees of the polynomials S and R and the
number of rows in the matrices can be quite large and it may well be that
in similar representations for P + eI, € > 0, that one or the other tends to
infinity as € tends to 0.
Write
Se=(5) St ... SY) (14)
with respect to the same decomposition as V = @év VJ. Express R similarly.
With these notations,

P+ 1= (S)T(1 - 2})S] + (R R, (15)
k
and
(VTP + DV = (V)T (Z(Si)% —a})S] + <Rj>TRJ’) Vi (16)
k

Evaluating (16) at tuples X and H of selfadjoint operators gives the
inequality,

(V)" (X )PP (X) + D)V (X, H)
§(Vj)T(X,H) (Z(S]JC)T(X)SIJC(X) + (Rj)T(X)Rj(X)> VI(X, H)
k

(17)

13



Letting V7 also denote the vector with V7 in the j-th position and zero
elsewhere and observing that SpV7 = SiVj , the above inequality becomes,

(V)'(X.H)(P(X) + I)V! (X, H)
<D (SV)T(X, H)(Sp V(X H) + (RV)T(X)(RIVT)(X).
k
(18)

Similarly, evaluating (13) at X and H, tuples of symmetric operators, where
| X5|? < % produces the inequality,

V(X,H)'(P(X)+ 1)V (X,H)

SV (X, H)T (% <Z<Sk>T<X>sk<X>> ¥ RT<X>R<X>) VX, H).
k (19)
Define L
(%)fslv
(3)28V
o-| (20)
(3)2,,V
RV

To save space, we will abbreviate columns using the €P notation; for exam-
ple, @ = @,.(1)2(S,V) B RV. Thus

QT(X, H)Q(X, H) =

V(X H) <§<Z<Sk>T<X>sk<X>> - RT<X>R<X>) V(X H)
k

which is the right hand side of (19). In particular, if | X;|? < 1, then, for
real t,

QIX,tH)'Q(X,tH) < V(X,tH)'(P(X)+ V(X,tH)
(X, tH) + V(X,tH)TV(X,tH).  (21)

Thus,

lQX,tH)|? = QX tH)"Q(X,tH)]
lg(X, tH)|| + |V (X, tH)V (X, tH)]|. (22)

N
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Hence, for || X,[|? < 3, [|Hgl| <1 and [t| <1,
1
QX tH)| < (lglln + VTV )2 (23)
Let Q; = <@k(%)%5ivj> ® R'VJ. Then,

QQj(XﬂH)TQj(X7H) >

S(SIVIT (X, H)SIVI(X, H) + (RV)T (X, H)RVI(X, H).  (24)
k

Since the right hand side above is the same as the right hand side of (18),
2Q;(X, H)'Q;(X,H) > VI(X, H)' P/(X)VI(X,H) (25)

so that

1Q; (X, H)|I* = S [IV7 (X, H)T P2 (X)VI (X, H)J. (26)

1
2

For each 0 < j < N there exists a polynomial ;(¢) (an old fashion poly-
nomial in the real variable t) of degree at most N such that fol Iy (t)dt =1

and for each 0 < k # j < N, fol tk~;(t)dt = 0. Consequently,

/ IQ(X,tH)fyj(t)dt = P / 1(%)%SkV(X,tH)@RV(X,tH)yj(t)dt

0 0
= <@k(%)%s,§(X)VJ(X, H)> ® R (X)VI(X, K27)
= Q;(X,H).

Thus, for (X, H) € IT (where II is defined near (12))

1 1
1Q; (X, H)| S/O QX tH) |1y (B)ldt < jlloo(lalln + VIV )2, (28)

where ||7;]| is the supremum norm of ; in the interval 0 <t <1 and (23)
was used in the second inequality. Combining (28) and (26) gives,

IV (x, H)PH(X)V2 (X, H)I| < 2]|yll3 (gl + VIV, (29)
Thus, if we let C = 2max{||v;||% : 1 <j < N}, then
VI (X, H)PP(X)VI (X, H)|| < C(llglln + VI V]|n) (30)

for all (X,H) eIl and all1 <j <N.
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To complete the proof, notice that
Vi) PPV =Y "o hy P2 heB, (31)

where the sum is over all «, 5 with degree exactly j — 1 in h (and at most M
in x) and 1 < k,¢ < g,. By Lemma 3.1, for distinct (hyc, hn3) the terms
ﬂTthfl;ja nslw are || [[2 orthogonal. Since also, for each relevant &, £, a, 3,

laThe P2, sheBllz = |PL7, 5ll2, it follows that

VI (M, NYTPRVI(M, NG =Y 1P, 5,513 (32)

Since the norms ||-||2 and |- || are equivalent on Napson, the lemma follows
by combining (32) and (30). [

3.3.2 The cone Cy y is closed

Lemma 3.8 Given M and N and a bounded set S C Cyr n, there exists a
Cys such that if ¢ € S and if P € Par,n is such that ¢ = V]\E’NPVM,N; then
||P;]g||n < Cs for each 0 < j,k < N and o, 8 € 'y n of degree exactly j in
h.

Proof. Let C be as in Lemma 3.7 and let K denote a bound for S so
that if ¢ € S, then ||g[[n < K. Then, ||PL| < C(K + |[VTV|n) for all
relevant P and admissible choices of j and «. Since P(X) > 0 for any tuple
X of selfadjoint contractions, it follows that the off diagonal entries of P
also satisfy the inequality HPO{’/;(X)H < O(K +||[VTV||n) for any tuple X of
selfadjoint contractions. The lemma now follows. ]

Proposition 3.9 For each M and N, the cone Cyrn is a closed subset of
Norman.

Proof. Suppose ¢, € Cy,n converges to g. Then |gn|nm is a bounded
sequence and there is a K such that |g,|/q + |V Vg < K.

For each n there exists P(z;n) € Py such that ¢, = VIP(;n)V.
Thus, by Lemma 3.8, there is a constant C such that which bounds the
|| - [/ norm of all the entries of all the P(z;n). Since the entries of each
P(x;n) have degree at most 2M, it follows that some subsequence of P(x;n),
still denoted P(z;n), converges to some P and therefore, for any tuple X,
P(X;n) converges to P(X). In particular, P satisfies item (1) of Definition
2.1. Similarly, as each P(x;n) satisfies items (2) and (3) of Definition 2.1,
so does P. Thus P € Py n. Finally, as P(x;n) converges entry-wise,
VT P(-;n)V converges to VI PV. [
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3.3.3 The separation argument

Proposition 3.10 Fiz M and N. If ¢ € Noyman, but ¢ ¢ Cun, then
there ezists a linear functional X : Nopran — R such that A(pT) = \(p),
MCun) >0, and M(pTp) > 0 for all nonzero p € Ny, but A(g) < 0. In
particular, \(()) > 0.

Proof. By Proposition 3.9, Cpr v C Naaran is a closed set. Since Cpsn
is a closed convex set and ¢ ¢ Car,n, there exists a (real) linear functional
A : Moponv — R and a real number ¢ so that A(g) < ¢ < A(p) for all
p € Car,v. Since Cp n is a cone containing 0, it follows that ¢ < 0. Define
As(p) = 3(A(p+pT)). Then A® is linear; AS(pT) = A%(p); and A%(p) = A(p)
if p is symmetric and thus A®(p) > 0 for all p € Cps,y and A(g) < 0.

Let 1 denote the linear functional of Lemma 3.5 (b). There is a k > 0
such that A*(¢)+rpu(q) < 0. Let A = A®+kp. Then A(g) < 0, A(Cap,n) > 0,
and A(pTp) > 0 for all nonzero p € Ny n. (]

4 Proof of the Theorem 2.2

Let ¢ € Nyn C Mapan be given. If ¢ ¢ Carn, then there is a linear
functional A as in Proposition (3.10). Let H, v, and (X, H) be as in Lemma
3.4. In particular, X and H are selfadjoint tuples, each X} is a contraction,
and < q(X,H)vy,7 >= A(g) < 0. This proves the contrapositive; i.e., if
q ¢ C, then there are tuples X and H with the right properties such that
q(X, H) is not positive semidefinite. Indeed, it shows more. If ¢ € Ny N
and ¢(X, H) > 0 for all relevant (X, H), then g € Cps N
To prove the stronger conclusion of the theorem, suppose now that g €
Miron. Then from what is already proved, ¢ € Caran. Thus, there exists
a P € Pyran so that ¢ = VTPV, For a given (X, H) consider
0= lim tz(%mq(x, tH) = lim V(X, tHTP(X)V(X,tH)
=V2N(Xx, H)T P2N,2N (X)V*N (X, H)
from which it follows that V2V (X, H)T P?N2N(X)V2N (X, H) = 0 for all
(X, H). From a version of Lemma 3.5(a), it follows that
V2N (, B)T PPN () V2N (2, h) = 0.

By Lemma 3.1, P?V2V = 0. Since P(X) > 0 for all tuples of contractions
and P?V2N(X) = 0, it must be the case that P?VJ(X) = P#2N(X) = 0
for each 0 < j < 2N. Thus P?NJ = Pi2N = ( for each j and hence
q € Caprav—1- Continuing by induction completes the proof.
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