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Abstract

Hilbert's 17th problem concerns expressing polynomials on Rn as a sum of squares. It is

well known that many positive polynomials are not sums of squares; see [R00] [deA preprt] for

excellent surveys. In this paper we consider symmetric non-commutative polynomials and call

one \matrix positive", if whenever matrices of any size are substituted for the variables in the

polynomial the matrix value which the polynomial takes is positive semide�nite. The result in

this paper is:

A polynomial is matrix positive if and only if it is a sum of squares.

1 Introduction

We consider polynomials, that is, weighted sums of words on 2n generators which are closed

under an involution, denoted by T , somewhat loosely called transpose. We denote the genera-

tors by X1; � � � ;Xn;X
T
1 ; � � � ;X

T
n and abbreviate them with the notation X = fX1;X2; : : : ;Xng

and XT = fXT
1 ;X

T
2 ; : : : ;X

T
n g.

We call a symmetric polynomial, Q, in X and XT matrix-positive provided that when

we substitute into Q any real matrices X1; � � � ;Xn of any dimension r � r for X1; � � � ;Xn, and

their transposes, X �
1 ; � � � ;X

�
n for XT

1 ; � � � ;X
T
n , the resulting matrix Q(X1; � � � ;Xn;X �

1 ; � � � ;X
�
n )

is positive semi-de�nite. Consider the following example in two indeterminants

Q(X) = X2
1 + (X2

1 )
T +XT

2 X2: (1.1)

If X1 and X2 are one dimensional, then Q(X ) = X 2
1 + (X 2

1 )
T + X T

2 X2 is a sum of squares of

numbers and so is positive semi-de�nite. However, if we substitute X1 =

�
0 1

�1 0

�
for X1 and

X2 =

�
1 0

0 1

�
for X2, then we get

Q(X ) =

�
�1 0

0 �1

�
(1.2)

�
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which is not positive semi-de�nite. Thus Q(X ) is not matrix positive.

We say a polynomial Q is a Sum of Squares, SoS, provided

Q(X) =

kX
i=1

hi(X)T hi(X) (1.3)

where each hi is a polynomial in X and XT .

Theorem 1.1 Suppose Q is a non-commutative symmetric polynomial. If Q is a SoS, then Q
is matrix-positive. If Q is matrix-positive, then Q is a SoS.

The remainder of this paper is devoted to the proof, with the exception being a brief section

at the end motivating the study of matrix positivity and describing implications of our Theorem.

The proof is not entirely self contained in that it requires Corollary 3.3 from [CHSY preprt], so

the serious reader might want to obtain that paper. The case where all operators are complex

unitary was proved in [M].

This paper owes a serious debt to Je� Ovall for numerous suggestions and a careful reading.

Thanks are also due to Daniel Curtis who conducted some valuable computer experiments.

2 Representing Symmetric Polynomials

In this section we give a standard \Gram" representation for a polynomial. Also we charac-

terize the non-uniqueness in the representation.

2.1 The Represention

Lemma 2.1 If Q(X) is a symmetric polynomial, then there exists a symmetric matrix MQ with

real entries, not dependent on X, and a vector V (X) of monomials in X such that

Q(X) = V (X)TMQ V (X): (2.1)

Furthermore, the vector V (X) can always be chosen to be V d(X) where d is the least integer

bigger than 1
2
(degree of Q).

Here we let V d denote the column vector of all monic monomials of degree less than or equal

to d in Xj and X
T
j for j = 1; : : : ; n, listed in graded lexicographic order. The length of V d is

�(d) := 1+(2n)+ (2n)2+ � � �+(2n)d, since that is the number of monomials in X;XT of length

= d. For example, if X = fX1;X2g, then V 2(X) is the column vector with entries

fI;X1;X2;X
T
1 ;X

T
2 ;X

2
1 ;X1X2;X1X

T
1 ;X1X

T
2 ;X2X1; : : : ; (X

T
2 )

2g:

We think of V (X) as a vector of monomials which often will be denoted

V (X) =

0
B@

V (X)0
...

V (X)p�1

1
CA : (2.2)
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Examples of the representation (2.2) are

Q = X1X
T
1 +X1X2 +XT

2 X
T
1 + 2 + 2XT

2 X
T
1 X1X2 =

0
@ I

XT
1

X1X2

1
A

T 0
@2 0 1

0 1 0

1 0 2

1
A
0
@ I

XT
1

X1X2

1
A :

Here

V (X) =

0
@ I

XT
1

X1X2

1
A and MQ =

0
@2 0 1

0 1 0

1 0 2

1
A : (2.3)

Another example is

Q = 2XT
2 X

T
1 X

T
2 X2X1X2 =

�
X2X1X2

�T �
2
� �
X2X1X2

�
:

Proof of Lemma 2.1 If m is a monic monomial in X and XT of degree less than or equal to

2d, then we can write m as a product of two monomials

m = mLmR

each of degree � d. Thus m+mT can be written m+mT = V d(X)TEijV
d(X) where Eij is a

self adjoint matrix whose entries are all 0 except the ijth and jith entry corresponding to

[V d(X)T ]i = mL and [V d(X)]j = mR

are equal to 1.

Suppose that i 6= j. Then

V d(X)EijV
d(X) =

�
V d(X)i
V d(X)j

�T �
0 1

1 0

��
V d(X)i
V d(X)j

�

= V d(X)Tj V
d(X)i + V d(X)Ti V

d(X)j

= mT
R mT

L +mL mR

= mT +m:

We would like to use representing matrices having only zeroes on the diagonal. Any monomial

m of degree strictly less than 2d and greater than 0 has such a representation. Also even if m

has degree 2d and is not symmetric, it has such a representation, which is unique. Thus for

monomials m with 1 � degree m � 2d� 1 or which are not symmetric, we de�ne Mm to be the

set of matrices Eij having only zeroes on the diagonal and representing m+mT via

m+mT = V d(X)TEijV
d(X):

When degree m = 2d and m = mT , the monic monomial m has a unique representation

m = mLmR with deg mL = d and deg mR = d. In this case mT
L = mR. Thus the representing

set Mm for m consists of one matrix which is all 0's except for one diagonal entry which is 1.

When degree m is 0 this is also true.
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To represent a symmetric Q write it as a weighted sum of symmetrized monic monomials,

w`(m` + (m`)T ). Thus we get a representation for Q with

MQ :=

LX
`=1

w`M` (2.4)

where we choose one matrix M` from each set Mm`
. �

The representation

Q(X) = V d(X)TMQV
d(X)

for a �xed Q can be done with many symmetric matrices MQ. We characterize this non-

uniqueness in x2.2.

2.2 The Non-uniqueness in the Represention

De�ne SRp�p to be the symmetric p � p matrices and abbreviate positive semide�nite by

PSD. A non-commutative polynomial Q with a representation

Q(X) = V (X)TM0
QV (X) (2.5)

may also be represented by di�erent M 's and the same V . These representations of Q have M

of the form

M =M0
Q +B (2.6)

where B"BV with BV � SRp�p de�ned by

BV := fB : V (X)TBV (X) = 0 and B = BT g: (2.7)

HereM0
Q"SR

p�p. If one matrix M of the form (2.6) is PSD, then the Cholesky decomposition of

M implies Q is a SoS. This is discussed more fully in Proposition 6.1. It is well known structure

which was exploited quite successfully by [PW98] for computational purposes in attempting to

express commutative polynomials as SoS.

BV can be neatly characterized as the span of a certain set of \fundamental matrices for

V " each having 3 or 4 nonzero entries. This is needed later. The fundamental matrices sit in

correspondence with those monomials which are entries of V (X) satisfying

V (X)Ti V (X)j = V (X)Tk V (X)` (2.8)

and we de�ne a fundamental matrix corresponding to the pair of pairs of integers f(i; j); (k; `)g
satisfying (2.8) to be any matrix F satisfying

Fij = �Fk`

Fji = �F`k

Fst = 0 otherwise:

We denote the set of such fundamental matrices by F(f(i; j); (k; `)g). Clearly any F inFf(i; j); (k; `)g
is a symmetric matrix. Note that if (i; j) = (k; `), then Ff(i; j); (i; j)g contains only the zero

matrix.
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Lemma 2.2 The fundamental matrices are contained in BV and BV is the span of them.

Proof:

V (X)TBV (X) =

p�1X
u;s=0

BusV (X)TuV (X)s (2.9)

is a sum of monomials, so this is identically 0 if and only if the coeÆcient of each monomial is

0. Consider one monomial �(X) which can be written in r di�erent ways

�(X) = V (X)Ti`V (X)j` ` = 1; : : : ; r: (2.10)

The coeÆcients of �(X) in (2.9) which make �(X) disappear are

��(X) := f(Bi1j1 ; : : : ; Birjr) :

rX
`=1

Bi`j` = 0g:

This is a vector space spanned by the subset consisting of all vectors in ��(X) having exactly

two nonzero entries, say fi`u ; j`ug and fi`s ; j`sg. Symmetry of B forces the coeÆcient of �(X)

to vanish if and only if the coeÆcient of �(X)T vanishes. More speci�cally, each such vector

corresponds to fundamental matrices F(f(i`u ; j`u); (i`s ; j`s)g) for V . Here (i`u ; j`u) is not allowed
to equal (i`s ; j`s).

Clearly, an F in F(f(i`u ; j`u); (i`s ; j`s)g) is in BV , because

V (X)TFV (X) =

p�1X
u;s=1

FusV (X)TuV (X)s (2.11)

= Fi`u j`uV (X)Ti`uV (X)j`u + Fi`sj`sV (X)Ti`sV (X)j`s

+Fj`u i`uV (X)Tj`u
V (X)i`u + Fj`s i`sV (X)Tj`s

V (X)i`s
= [Fi`u j`u + Fi`s j`s ]�(X) + [Fj`u i`u + Fj`s i`s ]�(X) = 0:

Let P� denote the set of all pairs of pairs of integers associated with the monomial

�(X) by (2.10). We do not allow repetition inside a pair of pairs, that is, the two pairs cannot

be the same. The span of the fundamental matrices arising from ��(X) as we sweep through the

monomials �(X) equals BV . That is,

BV = span fF(f(i; j); (k; `)g) : f(i; j); (k; `)g 2 P� for some monomial �g:

�

3 The Range of a Representation of a List of Monomials

We shall be substituting matrices X1; : : : ;Xn 2 Rr�r for the indeterminants X1; : : : ; Xn in

V d to obtain a vector denoted V d(X ) whose entries are r � r matrices. Fix v0 2 Rr and de�ne

Rv0;r
d := fV d(X )v0 : all X 2 Rr�rg:
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Our goal in this section will be to give a simple characterization ofRv0;r whenever r is suÆciently

large.

As an example consider the range not for V d(X) but for the shorter list of monomials V (X)

given by (2.3) when r = 2 and v0 =

�
1

3

�
. This range is

R =

8>>>>>><
>>>>>>:

0
BBBBBB@

�
1

3

�
�
a c

b a

��
1

3

�
�
a b

c d

��
e f

g h

��
1

3

�

1
CCCCCCA

: a; b; c; d; e; f; g; h 2 R

9>>>>>>=
>>>>>>;

=

0
BBBBBBBBBB@

0
BBBBBBBBBB@

�
1

3

�

�
x

y

�

�
z

w

�

1
CCCCCCCCCCA

: x; y; z; w 2 R

1
CCCCCCCCCCA
:

To see the nature of our characterization, think of v 2 Rv0;r

d
as �(d) vectors v0; : : : ; v�(d)�1

in Rr. They correspond to monomials in some matrix tuple X applied to v0, that is, to

V (X )0v0; : : : ; V (X )�(d)�1v0 and as a consequence certain dot products of them are equal, for

example,

X1X2v0 � X3X1v0 = X2v � X
T
1 X3X1v0

which in notation we soon formally introduce says that the component vectors of v satisfy

vf1;2g � vf3;1g = vf2g � vf�1;3;1g: (3.1)

There are many similar relationships and the main result of this section is that this set of

relationships precisely characterizes the closure of Rv0;r

d . To give details we need considerable

notation.

3.1 Notation

A monomial Xj1Xj2 : : : Xj` is determined by a tuple j := fj1; j2; : : : ; j`g of integers �k �
ji � k; ji 6= 0 with 1 � i � `; we abbreviate the corresponding monomial by Xj . Here X�ji

means XT
ji
. Note, X�(�ji) = XTT

ji
= Xji . Denote all such tuples of ` integers by U `. The

only idiosyncrasy with this rather intuitive notation is that we do not allow any ji to be 0. For

example, we exclude tuples like

j = f2; 0;�8; 4g
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which naturally would correspond to the monomial X2IX
T
8 X4 = X2X

T
8 X4 = Xf2;�8;4g. Exclud-

ing 0 as an index avoids parameterizing the same monomial in two di�erent ways. Indeed tuples

in U1 [ U2 [ : : : U ` sit in one to one correspondence with monomials in X1; : : : ;Xn;X
T
1 ; : : : X

T
n

with degree bigger than 0 and no bigger than `. To include the monomial I use the notation

X0 = I and U0 denotes 0. We denote by U ` all tuples

U ` := U0 [ U1 [ � � � [ U `

of length less than or equal to `; together with U0 which is 0.

If matrices X are substituted for X, then Xj becomes X j and we denote the vector X jv0 by

vj := X jv0: (3.2)

This notation is illustrated by (3.1). Also it is easy to confuse with notation used in x2.1 and

x5 where vj has a subscript which is an integer rather than a tuple of integers.

De�ne concatenation of two sequences of integers j and w, denoted j � w, by

j � w := fj1; : : : ; j`; w1; : : : ; wrg

where j := fj1; : : : ; j`g and w := fw1; : : : ; wrg. De�ne the transpose of the sequence j byej := fj`; : : : ; j1g, and de�ne �j to be f�j1; : : : ;�j`g. Thus

(Xj)T = (Xj1Xj2 : : : Xj`)
T = X�j` : : : X�j1 = X�~j :

The key dot product relation on the components of v = V d(X )v0 is

vj�w � vs = vw � v(�ej)�s (3.3)

which is true because

Xj�wv0 �X
sv0 = Xwv0 � [X

j ]TXsv0

= Xwv0 �X
�jXsv0

for any sequences j" Ud; w" Ud; s" Ud for which j � w" Ud and (�ej) � s" Ud.

3.2 Result on the Range

Proposition 3.1 Fix v0 2 Rr. Suppose we have a set bSd of vectors vj in Rr indexed by tuples

j 2 U0 [ U1 [ � � � [ Ud = Ud

which satisfy

1. the dot product relations (3.3)

2. the vectors in bSd�1 := fvj in bSd : j 2 Ud�1g are linearly independent.
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Then there are matrices X1; : : : ;Xn 2 R
r�r, such that

vj = X jv0 = Xj1Xj2 : : :Xj`v0

for all j 2 U ` for 1 � ` � d.

Proof: For each 1 � t � n, de�ne a r � r matrix Xt on bS
d�1 and bX�t on bSd�1 by

Xtvj := vftg�j and bX�tvj := v(�ftg)�j for all vj"bS
d�1: (3.4)

Thus Xt and bX�t are de�ned on the span Sd�1 of bSd�1 and not de�ned on its orthogonal

complement, S(d�1)? in Rr. We can think of fully de�ning Xt and bX�t on Rr in terms of

matrices

Xt =

�
X11 X12

X21 X22

� bX�t =
 bX11

bX12bX21
bX22

!

partitioned with respect to the subspace Sd�1 and S(d�1)?, where X11;X21; bX11
bX21 are known

and

X12;X22; bX12; bX22 (3.5)

are free to be determined.

We wish to choose the free blocks (3.5) to make X T
t = bX�t, and now we show how this is

done. Since both X11 and bX11 are de�ned we must, verify the compatibility condition X T
11 =

bX11.

This follows from the \dot product" relations (3.3), namely, for any vj and vs in bSd�1, a basis

for Sd�1, we have

vj � X
T
11vs = X11vj � vs = Xtvj � vs = vftg�j � vs = vj � v(�ftg)�s

= vj � bX�tvs:
Thus X T

11 = [ bX�t]11 = bX11. From here on it is just a matter of picking undetermined blocks in

the obvious way. Set

X12 := bX T
21

bX12 := X T
21

thereby determining them completely. The choice of X22 and bX22 is completely open subject to

the constraint that

X T
22 =

bX22;

so we make any such choice. This constructs Xt and bX�t = X T
t .

Now we wish to show that with this choice of X we have

vj = X jv0 for j 2 UÆ (3.6)

for Æ = d. The proof proceeds by induction on the degree Æ of the monomial. For Æ = 0 we have

the �rst component of v is indeed v0, since X 0 = I; that is, our notation is consistent. Suppose

(3.6) holds for Æ < d1 and consider s = ftg � j where t 6= 0;�n � t � n and length j < Æ. Then

X sv0 = XtX
jv0 = Xtvj:

This together with (3.4) says X sv0 = vftg�j = vs as is required by (3.6) for length s = d1. �
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Theorem 3.2 For suÆciently large r, the subset

Rr
d := closurefRv0;r

d : v0 2 R
rg

of Rr�(d), equals the set

bRr
d :=

8>>><
>>>:

0
BBB@

v0
vf1g
...

vf�n;:::;�ng

1
CCCA "Rr�(d) : the entries vj in R

r satisfy the

dot product constraint (3.3)

9>>>=
>>>;
:

Proof (the beginning): Pick any v in bRr
d. Let v0 denote the �rst entry of v. If v0 is not

0 and if the entries vj for j 2 Ud�1 are linearly independent, then by Proposition 3.1 we have

v 2 Rr
d. If v0 is 0 or linear dependence occurs, then perturb the vj slightly while maintaining

the dot product conditions (3.3) to obtain a linearly independent set. The next section proves

that such perturbations are possible. �

3.2.1 Perturbations Overcome Linear Dependence

Lemma 3.3 Suppose that vj for j 2 Ud are vectors in Rr which satisfy the dot product relations

(3.3).

(a) If �j, for j 2 Ud in Rr are linearly independent, satisfy the relations (3.3), and if vi is

orthogonal to �j for each i; j 2 Ud, then the vectors

~vj = vj + �j for j 2 Ud

are linearly independent and satisfy the relations (3.3).

(b) If there exist linearly independent  j in R
q for j 2 Ud satisfying the relations (3.3), and

if r � �(d)+q, then there exist arbitrarily small perturbations �j of vj in R
r, that is, ~vj = vj+�j

which are linearly independent and satisfy (3.3).

Proof: That (3.3) holds for the ~vj follows from orthogonality in (a) which implies

~vi � ~vj = vi � vj + �i � �j

and from the fact that both the set of vj and the set of �j satisfy (3.3). To see the linear

independence of the ~vj 's consider a linear combination

0 =
X
j2Ud

�j~vj =
X
j2Ud

�jvj +
X
j2Ud

�j�j

which, since all vi are orthogonal to all, �j implies

X
j2Ud

�j�j = 0:
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By linear independence of the �j , the �j are all 0. This proves part (a).

To prove part (b) note that the orthogonal complement � of the span of vj for j 2 Ud has

dimension greater than or equal to q. Thus we can embed Rq, which contains �j for j 2 Ud,

isometrically into �, and we denote the image of these vectors under embedding by ~�j for j 2 U
d.

Pick any " and set

 j := vj + "~�j :

The vectors vj and "~�j satisfy the hypothesis of part (a) Lemma 3.3. The conclusion of part (a)

yields the conclusion we are trying to prove for part (b). �

The next step is to prove

Lemma 3.4 . There exists a set f�j for j 2 Udg of linearly independent vectors in Rq for some

(large) q which satis�es (3.3).

Proof: Our approach to constructing the �j 's is to show that a vector consisting of linearly

independent �j 's exists in R
v0;q
d

. Since the entries of any vector in R
v0;q
d

satisfy the dot product

relations (3.3) this accomplishes our goal. Fix v0. Now we assume any vector in R
v0;q
d has

linearly dependent entries. Equivalently, for any q � q matrices X = X1; : : : ;Xn, we have real

numbers �j(X ; v0) for j 2 Ud satisfyingX
j2Ud

�j(X ; v0)V
d(X )j = 0 (3.7)

In [CHSY preprt] Corollary 3.3 says1 that if (3.7) holds for all large enough X and v0, then

there exist real numbers �j for j 2 Ud such that the non-commutative polynomialX
j2Ud

�jV
d(X)j (3.8)

in indeterminates X is identically 0. The point here is that the �j do not depend on X. The

V d(X)j for j 2 Ud are distinct monomials, hence linearly independent. This contradicts (3.8).

Proof of Theorem 3.2 (the �nale): One �nishes the proof of Theorem 3.2 simply by putting

together Lemma 3.3 and Lemma 3.4. �

4 Making Partially De�ned Matrices Positive

4.1 Matrix Positivising Problems

The SoS problem when reformulated as in equation (2.6), (3.7) and the subsequent comment

leads us to a special case of the following problem.

Matrix positivising problem,M0;B: Given a subspace B � SRp�p and givenM0"SRp�p.

Is there a B"B such that

M =M0 +B

is positive semide�nite?
1
The proof in [CHSY preprt] goes through quite a few steps, each reducing the dependence of the �j on X

and v0.
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4.2 The Dual Problem

Now we describe the dual problem which is in fact equivalent to this problem. Our interest

stems from the fact that the matrix positivity condition at the center of our interest is equivalent

to the positivity condition at the core of the dual problem. A good reference on positivity in

matrix situations is [P86].

Suppose B is a subspace of the symmetric matrices SRp�p. We shall use the inner product

< �; � > on SRp�p, de�ned by

< A;B > = tr AB: (4.1)

Let B? denote the orthogonal complement

B? := fA 2 SRp�p : tr AB = 0 all B"Bg

of B in SRp�p. Clearly B? is a linear subspace.

If the answer to the matrix positivising problem is yes, that is, M = M0 + B0 � 0 exists,

the linear functional `M0 de�ned on B? by

`M0(A) = tr M0A = tr(M0 +B)A

(for any B"B) is nonnegative for each A"B?+, the set of positive semide�nite matrices which lie

in B?. This is because
`M0(A) = tr(M0 +B0)A � 0

since A is positive semide�nite. The converse is also true, which gives:

Lemma 4.1 Suppose that B?+ contains an invertible matrix. The matrix positivising problem

M0;B has a positive solution if and only if the linear functional `M0 is nonnegative on B?+.

Proof: One side of the result is proved, so we turn to proving the side which starts with the linear

functional `M0 . We invoke a variation on the Hahn-Banach Theorem, often called the Krein

Extension Theorem, see Ch.10.4 Exercise 22 [R64], which says when positive linear functionals

on a subspace extend to positive linear functionals on the whole space. In our situation we are

assuming that the linear functional `M0
takes positive values on B? intersect the cone of PSD

matrices. The PSD matrices satisfy P 2 PSD and �P 2PSD implies P = 0, one hypothesis of

the Krein extension Theorem. The other key hypothesis is that if W is in SRp�p, then there

is a A 2 B?+ which dominates W , that is A �W � 0. The existence of an invertible matrix
~A in B?+ implies this, since any W is dominated by some scalar multiple of ~A. Thus we have
veri�ed the hypothesis guaranteeing that the linear functional `M0 extends to a linear functional
~̀ which takes a nonnegative value on any nonnegative matrix.

We can represent ~̀ as
~̀(A) = tr MA for all A 2 Rp�p

using a matrix M 2 Rp�p. The positivity of ~̀ implies that M is a PSD matrix. Also for any

A 2 B?,
0 = ~̀(A)� `M0(A) = tr([M �M0]A):

11



Thus B :=M �M0 2 B?
?
= B. Therefore we have produced a PSD matrix

M =M0 +B

with B 2 B as required.

This was stated (with slightly less generality) in Theorem 2.1 [AHMR88]. �

Ultimately proving Theorem 1.1 depends on Lemma 4.1 applied to M0
Q;BV d in x2. Thus we

need to compute (BV d)?+ and the next section does something a little more general than that.

5 Ranges and the Dual Problem

In x2.2 we saw that the set BV , characterizing non-uniqueness of the Gram representation,

has the form
BP : = span

f(i; j); (k; `)g 2 P
P 2 P

F (f(i; j); (k; `)g)

where P is a collection of sets P of pair of pairs of �nite integers between 0 and p� 1; no two

pairs in a element of P can be the same. Here we recall the notation

F(f(i; j); (k; `)g) = fB : Bij = �Bk`; Bji = �B`k; otherwise Bus = 0g :

While in x2.2 each P was associated to a monomial, in this section we study an arbitrary

collection P of sets P of pairs of pairs subject to the condition that any two sets P 1, P 2 in P
are disjoint. It is this that we formally call a pair of pair collection. To P we associate T (P)
the set of all pairs of pairs in P, that is,

T (P) := ff(i; j); (k; `)g 2 P : P 2 Pg:

It is useful because

BP = span
f(i;j);(k;`)g2T (P)

F(f(i; j); (k; `)g):

BP is a subset of the symmetric p � p matrices, and in this section we characterize its

orthogonal complement (BP)? inside SRp�p with respect to the trace dot product h ; i. This
characterization of the orthogonal complement will be done in terms of sets of vectors in Rpr of

the form

RP;r :=

8>>><
>>>:

0
BBB@

v0
v1
...

vp�1

1
CCCA "Rpr : each vj 2 R

r and vi � vj = vk � v` for f(i; j); (k; `)g 2 P

9>>>=
>>>;

where P denotes a set of pairs of pairs of integers between 0 and p� 1. The motivation comes

from recalling that such sets occurred in our key Theorem 3.2 which characterized the range of

V d(X ) applied to v0 2 Rr. In fact what was found there is that Rr
d is

Rr
d =

\
fRP�;r : � a monomial in X;XT of degree � dg

12



though in Theorem 3.2 the notation was di�erent. Here P� stands for the particular set of

pairs of pairs de�ned in x2.1. This section lays out a strong link between the range of a list of

monomials V characterized in x3 and the ? of the null space of representations based on V .

We shall consider a matrix Av in SRp�p associated to v in RP;r by specifying that its k`th

entry is

[Av]k` = vk � v`: (5.1)

Note that Av is a PSD matrix. The main result of this section is

Lemma 5.1 Suppose P is a pair of pair collection. Then

BP =

" \
P2P

fAv : v 2 R
P;rg

#?
� SRp�p

If r � p, then

(BP)?+ =
\
P2P

fAv : v 2 R
P;rg � SRp�p: (5.2)

Moreover if r � p, the set (BP)?+ contains no invertible matrix if and only if there is a nonzero

vector (x0; x1; : : : ; xp�1) 2 Rp satisfying

p�1X
j=0

vjxj = 0 (5.3)

for all v 2
T

P2P

RP;r.

5.1 Proof of Lemma 5.1

Some notation helps. De�ne

AP : = fAv : v 2 R
P;rg � SRp�p (5.4)

AP : =
\
P2P

AP :

In this notation the lemma says

(AP)? = BP (5.5)

AP = (BP)? \ (the PSD matrices) =: (BP)?+:

Thus AP , for r � p, is the intersection of the PSD matrices with a subspace of matrices.

We shall use

(AP)? = span
n
a(f(i; j); (k; `)g)? : f(i; j); (k; `)g 2 T (P)

o
(5.6)

13



where a is de�ned by

a(f(i; j); (k; `)g) := fAv : vi � vj = vk � v` v 2 R
prg:

The �rst step is to compute a(f(i; j); (k; `)g)? � SRp�p, and with this in mind note that

the symmetric matrix B is in it if and only if

tr BAv = 0 for all v 2 R
pr with vi � vj = vk � v`:

That is,

0 = trBAv =

p�1X
s;t=0

Bst[Av]st =

p�1X
s;t=0

Bstvs � vt (5.7)

= 2[Bij +Bk`]vi � vj +

p�1X
s;t=0

(s;t)6=(i;j)or(j;i)or

(k;`)or(`;k)

Bstvs � vt:

Since r � p we can choose a rich enough family of v satisfying vi � vj = vk � v` to conclude that

Bij +Bk` = 0

Bst = 0 if (s; t) 6= (i; j) or (j; i) or (k; `) or (`; k):

Clearly these conditions are suÆcient as well as necessary. Thus we have proved

af(i; j); (k; `)g? = Ff(i; j); (k; `)g:

Which because of (5.6) implies

(AP)? = BP

as required.

Next we compute (BP)?+. We need a lemma

Lemma 5.2 If A is a PSD matrix in SRp�p with the rank q, then it can be written as Av 2
SRp�p for some v = (v0; v1; : : : ; vp�1)

T with v`"R
q for ` = 0; : : : ; p� 1. We call this the q-vector

representation of A.

Proof. Start with A. By the Cholesky decomposition , LDLT , any PSD matrix A in

SRp�p has a representation

A =

qX
j=1

wj wjT (5.8)

where wj"Rp is a column vector with entries w
j
0; w

j
1; : : : ; w

j
p�1 2 R and with and q � p. Note q

can be taken to be the rank of A. Take v to be the vector

vT := (w1
0; : : : ; w

q
0; w

1
1; : : : ; w

q
1; : : : ; w

1
p�1; : : : ; w

q
p�1)
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which we use to de�ne subvectors vj by

vT =: (v0; v2; : : : ; vp�1);

that is, vk := (w1
k; : : : ; w

q
k).

Now we check that A is Av by showing that the k`th entry of A is [A]k` = vk � v`. To prove

this write (5.8) in long form as

A =

0
BBB@
w1
0

w1
1
...

w1
p

1
CCCA (w1

0; : : : ; w
1
p) + � � �+

0
BBB@
w
q
0

w
q
1
...

w
q
p

1
CCCA (w

q
0; : : : ; w

q
p):

to see that

[A]k` = w1
kw

1
` + w2

kw
2
` + � � �+ w

q
kw

q
` = vk � v`:

�

To complete the proof of Lemma 5.1 consider A 2 (BP)?+ � RF p�p and note that A has

a q-vector representation as A = Av for some v in Rpq. By the de�nition of BP equation (5.7)

implies the components vj 2 Rq of v satisfy vi � vj = vk � v` for all f(i; j); (k; `)g 2 T (P). Thus,
for q � r , we have Av 2 AP . Since the rank of A is less than or equal to p � r, we see that A

does have a r-representation, so we have proved the second formula in the lemma.

It remains only to prove (5.3). Begin with the observation that (BP)?+ is a cone, so if A1

and A2 belong to it, then so does A1 +A2. Since PSD implies

Null(A1 +A2) = Null(A1) \Null(A2);

we have by adding more Aj � (BP)?+, that if (BP)?+ does not contain an invertible matrix,

then there is a non trivial space N � Rp satisfying

N �
\

A2(BP)?+

Null(A):

Pick x 2 Rp satisfying x 2 Null(Av) and observe

0 = Avx � x =

p�1X
i=0

2
4p�1X
j=0

vi � vjxj

3
5xi

0 =








p�1X
j=0

vjxj








2

Thus (5.3) is true. �

Note that if r is too small, then we have not proved (and in fact it is not always true) that

fAv : v"RP;rg is a subspace intersect PSD.
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6 Proof of the Main Theorem

This brief section stitches together the earlier ones to prove Theorem 1.1.

We begin with a non-commutative symmetric polynomial Q. Assume that Q is matrix

positive. This forces its degree to be an even number which we denote 2d. We begin our proof

by representing Q as in x2 with a matrix we denote MQ in Rp�p where p = �(d) and with V d,

the vector which lists all monomials of degree � d.

Now we will show that

`MQ
(A) := tr MQA � 0 for all A 2 AV d;q (6.1)

where

AV d;q := fAV d(X )v0
: X is a tuple of q � q matrices and v0 2 R

qg:

Indeed, �x B 2 Rp�p. For X with entries Xt 2 Rq�q for jtj = 1; � � � ; n and v0"R
q, we have

V d(X )v0"R
qp. Then

`B(A) = tr BAV d(X )v0
=

p�1X
i;j=0

Bijvi � vj

= vT0 V
d(X )TBV d(X )v0:

Consequently,

`MQ
(AV d(X )v0

) = tr MQAV d(X )v0
= vT0 V

d(X )TMQV
d(X )v0 = vT0 Q(X )v0 � 0;

since Q is matrix positive.

De�ne BV d;q to be

BV d;q := fB 2 SRp�p : V d(X )TBV (X ) = 0 for all X 2 Rq�qg:

The �rst part of Lemma 5.1 says that

AV d;q � (BV d;q)
?+ � SRp�p

for q suÆciently large. Clearly, for large enough q, we have

BV d;q = BV d : (6.2)

Thus

AV d;q � (BV d)?+ � SRp�p: (6.3)

Assertions (6.1) and (6.3) together with Lemma 4.1 imply

Proposition 6.1 Matrix positivity of Q implies Q is a sum of squares if for some q the closure

of AV d;q is all of (BV d)?+ � SRp�pand if (BV d)?+ contains an invertible matrix.
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Proof: We saw immediately above that, `M0
� 0 on AV d;q, so if the closure of AV d;q is all of

(BV d)?+, then this implies that `M0
� 0 on (BV d)?+. Lemma 4.1 implies there is a PSD matrix

M of the form (2.6), that is,

Q(X) = V d(X)TMV d(X):

The Cholesky decomposition of M , namely M = LTDL with D diagonal and D nonnegative

gives a SoS decomposition of Q. �

To �nish proving Theorem 1.1 we apply x5 and x3. Theorem 3.2 says that if q is suÆciently

large then the closure of AV d;q has the form AP for a certain pair of pair collection P. P is

given explicitly by the dot product relations (3.3) for V d. Thus the second part of Lemma 5.1

and (6.2) combine with (6.3) to say that closure AV d;q = (BV d)?+.

Moreover, to see that (BV d)?+ contains an invertible matrix we apply (5.3). Again we use

that for large enough q, the set equality BV d = BV d;q = BP holds for the pair of pair collection

P. The only way (BV d)?+ could fail to contain an invertible matrix is if every set of vectors

fv0; v1; : : : ; v�(d)�1g in R
q which satis�es

vi � vj = vk � v` for all f(i; j); (k; `)g 2 P (6.4)

is linearly dependent. But Lemma 3.4 guarantees for large enough q that there does exist a

linearly independent set of vectors satisfying (6.4).

All hypotheses of Proposition 6.1 have been validated, thus we may conclude that Q is a

SoS. �

7 Motivation

This work was motivated by the question, what \ non-commutative inequality" features

should be put into a computer algebra package. The development of our package NCAlgebra,

which gives Mathematica capability in a general non-commutative algebra, is motivated largely

by linear systems engineering problems. Within the last 10 years matrix inequalities have come

to dominate this subject; so �nding helpful computer algebra techniques while unexplored is

important. The viewpoint we take is that of an engineering researcher who tries to �nd for-

mulas solving systems problems with the goal of having his formulas included in a workstation

(eg. Matlab) tool box. Such formulas typically involve non-commuting variables and the user of

the tool box (of which there are often thousands) substitutes matrices for the non-commutative

variables, quite possibly without knowing that is what he is doing. The matrices vary tremen-

dously in size depending on which physical system is being designed. The point is that formulas

in the tool box have non-commuting variables and any property required of them must hold

when matrices of any size are substituted in. This is what motivated our de�nition of matrix

positive polynomial.

Once convinced of the need to study matrix positive polynomials there is the disappointment

of observing that checking the condition even approximately by brute force faces the curse of

dimensionality and so is impractical. For example, to test a polynomial in two variables X;Y

with 5 � 5 matrices, where we use a 40 point grid on each matrix entry yields(40)2�25 � 1080
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di�erent matrices on which we need to evaluate the polynomial. This would take on the scale

of 1060 years.

On the other hand computing if a commutative polynomial with a modest number of terms

is a SoS can be done very quickly by a mixture of algebraic techniques due to Reznik, Powers-

Wormann, see[PW98], and semide�nite programming, see Parrilo [P00]. Their techniques apply

directly to non-commutative polynomials, so the main theorem of this paper tells us that matrix

positivity is a property which can be checked in practice.
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