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Abstract We study, in the spirit of modern real algebra, the interplay between
left ideals of the free∗-algebraF with n generators, and their suitably defined zero
sets; and similarly between quadratic submodules ofF and their positivity sets.
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1 Introduction

The present note is a continuation of our study of positivity in a free∗-algebra
[6], by further exploring Nullstellens̈atze and Positivstellensätze phenomena. The
parallel to the well known analogous commutative statements is striking: the free
algebra framework has sometimes simpler statements (for instance no need of
higher powers in the generic Nullstellensatz) and straightforward proofs (based on
elementary convexity techniques rather than Tarski’s principle). This is partially
explained by the great flexibility of the finite dimensional representations of the
free∗-algebra, which replace the more rigid point evaluations in the commutative
case.
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Let p(x,x∗) be a non-commutative polynomial in the free variables (with in-
volution) (x,x∗) = (x1, . . . ,xn,x∗1, . . . ,x

∗
n). Already the zero set of ap has a variety

of meanings when evaluating on ann-tuple of reald×d matricesX, and possibly
on a vectorv∈ Rd:
(i) {X : p(X) = 0},
(ii) {X : p(X) is not an invertible matrix}, or
(iii) {(X,v) : p(X)v = 0}.
There are corresponding levels of notions involving positivity.

Our principal aim is to develop the third concept of zero set; the only exist-
ing result being what we call the Bergman Nullstellensatz, since it was proved
by G. Bergman, see [5], after being conjectured by the authors of [5]. Besides
their intrinsic interest and timely discovery, the results contained in this note have
potential applications to modern system theory.

1.1 Definitions

We recall here some terminology and basic notations. There are several areas of
mathematics involved and we try to use terminology which is easily learned by all
but tilt toward the conventions of Marshall [10] and the references [2] [7].

Throughout this noteN stands for the set of natural numbers andR for the
field of real numbers. We consider variablesx = (x1, ...,xn), x∗ = (x∗1, ...,x

∗
n) and

the free algebraF = R〈x,x∗〉. We equipF with the canonicalR-linear involution:

(xk)∗ = x∗k, (x∗k)
∗ = xk, 1≤ k≤ n,

and ( f g)∗ = g∗ f ∗, f ,g ∈ F. A word in the variables(x,x∗) will sometimes be
called amonomial. A word w(x) depending only on thex variables will be called
analytic; an analytic polynomial inF is a linear combination of analytic words.
We denote byA the subalgebra of analytic polynomials ofF. Note thatA is not
closed under the involution. LetI be a left ideal ofF. The associatedsymmetrized
subspaceis

sym(I) = { f + f ∗; f ∈ I}.
If p = {p1, ..., pm} ∈ Fm is a set of polynomials, then we denote byFp = Fp1 +
...+Fpm the left ideal generated byp j .

The algebraF carries an important intrinsic order given by the cone of sums
of squares. Asum of squares(SOS)σ is, as the name suggests, an expression of
the form

σ =
N

∑
j=1

s∗j sj , (1)

where eachsj ∈ F = R〈x,x∗〉, and N is a natural number. The set of all sums
of squares inF is customarily denoted byΣ 2. It is a convex cone, the smallest
positivity cone in the∗-algebraF.

A polynomial p is symmetric if p = p∗. The linear space of allsymmetric
polynomialswill be denoted by symF. If alsoσ is a sum of squares as in equation
(1) and if p is a symmetric polynomial, define

σ ? p = ∑s∗j psj .
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We will evaluate polynomialsf in F to n-tuples of matrices. Specifically, if
X = (X1, . . . ,Xn) ∈ Md(R)n is a set ofd× d real matrices, we denote byX∗ the
corresponding adjoints (i.e. transposes), and setf (X,X∗) to be the corresponding
d× d matrix. We will freely interpretf (X,X∗) as a linear operator onRd. The
notation f (X,X∗)≥ 0 means non-negativity in the operator sense.

Thezero setof a left idealI ⊂ F is by definition

V(I) = {(X,v) ∈
⋃
d≥1

(Md(R)n×Rd); v 6= 0, f (X)v = 0, all f ∈ I}.

We use the same notationV(S) for the common zero set of all polynomials belong-
ing to a setS⊂ F. As an obvious observation,(X,v) is a zero ofσ = ∑s∗j sj ∈ Σ 2

if and only if (X,v) is a zero of eachsj .
Let S⊂ symF. Thepositivity set of Sis by definition

KS = {(X,v) ∈
⋃
d≥1

(Md(R)n×Rd); v 6= 0, 〈 f (X)v, v〉 ≥ 0, all f ∈ S}.

Thequadratic moduleassociated to a setS⊂ symF is

MS = {∑
i

h∗i fihi ; fi ∈ S∪{1}, hi ∈ F}.

By definition, a quadratic moduleMS is archimedeanif there existsC > 0 with the
propertyC2−x∗1x1− ...−x∗nxn∈MS. In particular, but not equivalently, there exists
aC such that ifs(X) is positive semidefinite for alls∈ S, then‖(X1, . . . ,Xn)‖ ≤C.
Operator theorists often call a cone with this type of propertyabsorbing. More
specifically, this means for a convex coneM ⊂ F that the element 1 belongs its
algebraic interior: for every f ∈F there existsλ > 0 with the property 1+λ f ∈M.
In the context of the algebraF and assuming that the convex cone contains all
sums of squares and is closed with respect to conjugations there is no distinction
between archimedean and absorbing which is readily proved starting from the
observation thatC2(C2−ww∗) = (C2−ww∗)2 +w(C2−w∗w)w∗.

One of the basic technical lemmas involved in all recent proofs pertaining to
positivity aspects in a free∗-algebra is a Minkowski separation argument. We
isolate it below for the convenience of the reader.

Lemma 1 Suppose M⊂ F is closed with respect to positive linear combinations;
i.e., if p,q∈M and s, t > 0, then sp+ tq∈M. If 1 belongs to the algebraic interior
of M, if C is a convex cone and C∩M ⊂ {0}, then there exists a linear functional
L : F−→ R such that

L(q)≤ 0≤ L(p), q∈C, p∈M,

and L(1) > 0.

Proof Let S= C−M + 1. ThenS is a convex set. The hypothesis that 1 is an
algebraic interior point ofM implies thatS is absorbing: givenf ∈ F there exists
t > 0 so that 1+ t(− f ) ∈ M so thatt f ∈ −M + 1⊂C−M + 1. Consequently it
makes sense to talk of the Minkowski functionalp of Sso thatp(x) = inf{t > 0 :
x
t ∈ S}. In particular,p(1)≥ 1.
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Defineλ (t1) = t on the one dimensional subspace ofF spanned by 1. One
readily checks that|λ (t1)| ≤ p(t1) and henceλ extends to a linear functionalL
onF satisfyingL≤ p. In particularL≤ 1 onS.

For m∈M andc∈C,

L(c)−L(m)+1 = L(c−m+1)≤ p(c−m+1)≤ 1.

HenceL(c)≤ L(m).
BecauseC is a cone it follows thatL(C) ≤ 0≤ L(M) and at the same time

L(1) = 1 > 0. ut
The discovery of this result goes back to Eidelheit and Kakutani (see for in-

stance [8]§17.1(3)). In this form it is due to Koethe. Its versatility was indepen-
dently remarked by M. Krein [9].

1.2 Outline of Results

We give five classes of results.
• Section 2 concerns a non-commutative polynomialq which is nonnegative on

the zero setV(p) of a set of analytic polynomialsp1, · · · , pm. Our proof relies
on an extension lemma for tuples of matrices.

• In section 3 we propose an abstract Bergman type Nullstellensatz. Key here
is that zero sets involve tuples of operators on finite dimensional spaces of all
dimensions. Notably this produces a radical free Nullstellensatz of interest in
the commutative case.

• Section 4 gives a sums of squares criteria for hereditary polynomials (those
with adjoint/transpose variables all to the left of the untransposed variables)
involving zero sets of tuples of commuting matrices.

• Section 5 gives a Nullstellensatz for arbitrary polynomials. However, we pay
for this generality by getting an approximate formula. Again zero sets based
on finite dimensional matrix spaces suffice.

• The last section, see Section 6, concerns the behavior of a polynomialq on a
“noncommutative semialgebraic set”. In this section the results demand con-
sideration of tuples of bounded operatorsX on a possibly infinite dimen-
sional space rather than only tuples of matrices. Also the last topic requires
an archimedean assumption, while the others do not.
The title of this paper reflects that〈 f (X)v,v〉 ≥ 0 implies 〈g(X)v,v〉 ≥ 0 is

a stronger statement thanf (X) is positive semidefinite impliesg(X) is positive
semidefinite.

2 A Nichtnegativstellensatz on “Analytic Varieties”

We use the notation and conventions introduced in the preceding section.

Theorem 1 (Nichtnegativstellensatz). Let p∈ Am and assume that q∈ symF
satisfies V(p)⊂ K{q}. Then

q∈ Σ
2 +sym(Fp).

If in addition,〈q(X)v,v〉= 0, for every(X,v) ∈V(p), then q∈ sym(Fp).
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The following fact, of independent interest, appears as a necessary step in the
proof of the preceding result.

Theorem 2 (Nullstellensatz). Let p∈ Am and q∈ F. If V(p) ⊂V(q), then q∈
Fp.

Note that in the latter theoremq need not be symmetric.
The strategy and main parts of the proof of Theorem 1 are modeled after those

in [6], and we will not repeat them. Instead, we will simply point out the novelty
needed to treat the more general situation covered by the new Nichtnegativstel-
lensatz. First we will need to prove Theorem 2. Towards this end we start with an
operator extension lemma.

Lemma 2 Let x= {x1, . . . ,xn}, y = {y1, . . . ,yn} be free, non-commuting vari-
ables. Let H be a finite dimensional Hilbert space, and let X be an n-tuple of
linear operators acting on H. Fix a degree d≥ 1 and let Z be the set of all words
in x,y, starting to the right with a yj , 1≤ j ≤ n, and of degree at most d.

Then there exists a larger finite dimensional Hilbert space H⊂ K, an n-tuple
of linear transformations̃X acting on K, such that

X̃j |H = Xj , 1≤ j ≤ n,

and the subspaces

z(X̃, X̃∗)H = {z(X̃, X̃∗)u; u∈ H}

are linearly independent; that is for every choice{uz : z∈ Z∪{1},uz∈H} 6= {0}
(i.e., for each nonzero function u: Z∪{1}→ H) the set

{z(X̃, X̃∗)uz, z∈ Z∪{1}},

is linearly independent.

Proof As a matter of notation, let|w| denote the length of a wordw and letFd

denote the polynomials inF of degree at mostd. View Fd as a the Hilbert space
with orthonormal basis the words of length at mostd. Let K = Fd⊗H. Identify
H isometrically as a subspace ofK via the embeddingh 7→ 1⊗h. More generally,
let H j denote the span of{w⊗h : |w|= j,h∈H}. With this notation,H = H0 and
K =⊕d

j=0H j .

The extended operators̃Xj : K −→ K will have a three diagonal(d+1)× (d+
1) block-matrix structure:

X̃j =



Xj A j(1)∗ 0 0 . . .
0 0 A j(2)∗ 0 0

0 B j(2) 0 A j(3)∗
...

0 0 B j(3) 0
...

...
...

...
...

...

 .
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The linear operatorsA j(k),B j(k) : H ′ −→ H ′ will be chosen later. This construc-
tion assures the validity of the first requirement in the statement: ifw(x) is a mono-
mial (i.e. word) in the variablesx, andu∈ H, then

w(X̃)u = w(X)u.

Let z(x,y) = zimzim−1...zi1 be a word in the variablesx,y, that is i1, i2, ..., im ∈
{1,2, ...,n} andzi = x or zi = y. Assume that the rightmost variable in the word is
ay: zi1 = yi1.

Next we evaluatez(X̃, X̃∗) at a vectoru∈ H ⊂ K, starting to read the wordz
from the right. First we encounter an element of the form

X̃∗
j u =


Xj

∗ 0 0 0 . . .
A j(1) 0 B j(2)∗ 0

0 A j(2) 0 B j(3)∗
0 0 A j(3) 0 . . .
...

...




u
0
0
0
...

 =


X∗

j u
A j(1)u

0
0
...

 .

Suppose that the next operation is applyingX̃`. We obtain

X̃`X̃
∗
j u =



...

...
B`(2)A j(1)u

0
0
...

 .

In general, starting the counting from zero, them-th entry ofz(X̃, X̃∗)u will be

z(X̃, X̃∗)u =


...

Cim(m) . . .Ci2(2)Ci1(1)u
0
0
...

 ,

whereCik(k) = Aik(k) if zik = yik andCik(k) = Bik(k) if zik = xik (in the wordz).
We claim that one can choose the linear operatorsA j(k) andB j(k), so that all

possible compositions

Cim(m) . . .Ci2(2)Ci1(1) : H −→ Hm, (C = A or B) (2)

of lengthm (m≤ d) are injective and have mutually orthogonal ranges. Explic-
itly, defineA j(k) : H j−1 → H j by A j(k)(w(x,y)⊗h) = [(y jw(x,y))⊗h] for h∈ H
and deg(w) = k−1; and similarlyB j(k)(w(x,y)⊗h) = [(x jw(x,y))⊗h] for h ∈
H, deg(w) = k−1.

To complete the proof, supposeu : Z∪ {1} → H is a nonzero function and
consider the sums

sj = ∑
|z|= j

z(X̃, X̃∗)uz



Strong Majorization in a Free∗− Algebra 7

ands = ∑d
0 sj . Note thatPHdsd is a linear combination of terms like in equation

(2) with products of lengthd. Consequently,sd = 0 if and only if uz = 0 for each
|z|= d. Similar reasoning then shows thats= 0 if and only ifu = 0 and the proof
is complete. ut

Corollary 1 Let x= {x1, . . . ,xn}, y = {y1, . . . ,yn} be free, non-commuting vari-
ables. Let H be a finite dimensional Hilbert space, and let X,Y be two n-tuples of
linear operators acting on H. Fix a degree d≥ 1.

Then there exists a larger finite dimensional Hilbert space H⊂ K, an n-tuple
of linear transformations̃X acting on K, such that

X̃j |H = Xj , 1≤ j ≤ n,

and for every polynomial p∈ R〈x,y〉 of degree at most d and vector v∈ H,

p(X̃, X̃∗)v = 0 ⇒ p(X,Y)v = 0.

Proof Let X̃ denote a tuple of matrices as constructed in Lemma 2.
In order to prove the second statement, let us decompose the non-commutative

polynomialp(x,y) as follows:

p(x,y) = ∑
z∈Z

z(x,y) fz(x),

where fz(x) is a polynomial in the variablesx and the wordz(x,y) ∈ Z starts to the
right with ay j (or is a scalar). Assume that the vectorv∈ H satisfies

0 6= p(X,Y)v = ∑
z

z(X,Y) fz(X)v.

In particular not all vectorsfz(X)v∈H are zero; i.e., the functionu : Z∪{1} 7→H
given byz 7→ uz = fz(X)v is nonzero. From Lemma 2 it follows that

p(X̃,Ỹ)v = ∑
z∈Z∪{1}

z(X̃,Ỹ) fz(X)v 6= 0.

ut

Proof (of Theorem 2). If the polynomialq in the statement is analytic, then the
result follows from the Bergman Nullstellensatz, Theorem 3 below. Because it
plays a central role in the next section, and because it is needed here, we have
included the proof in Section 3 below.

We will reduce the general case toq analytic, with the help of our dilation
lemma. Assume that, for alld ∈ N and pairs(X,v) ∈Md(R)n×Rd,

m

∑
j=1

‖p j(X)v‖= 0 ⇒ q(X,X∗)v = 0.

Fix (X,v) such that∑m
j=1‖p j(X)v‖ = 0 and letY ∈ Md(R)n be an arbitraryn-

tuple ofd×d matrices. In view of the above corollary, there exists a larger (finite
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dimensional) spaceRd ⊂K, and ann-tupleX̃ of linear operators acting onK, such
that

0 = p j(X)v = p j(X̃)v, 1≤ j ≤m,

and therefore
q(X̃, X̃∗)v = 0 ⇒ q(X,Y)v = 0.

Thus, the stated Nullstellensatz for analytic polynomials in the variables(x,y)
applies:

q(x,y) =
m

∑
j=1

r j(x,y)p j(x),

wherer j ∈R〈x,y〉, 1≤ j ≤m. In other terms, by replacingy= x∗, we findq∈ Fp
and the proof is complete. ut

Proof ( of Theorem 1). At this stage we can simply repeat, word by word, the
proof of the main result in [6]. We simply remark that Theorem 2 implies, under
the assumption and notation in Theorem 1,

k

∑
j=1

f j(x,x∗)∗ f j(x,x∗) ∈ sym(Fp)

is equivalent to
V(p1, ..., pm)⊂V( f1, ..., fk).

ut

3 Non-commutative Nullstellens̈atze

Compared to the domain marked by Hilbert’s Nullstellensatz and its many con-
sequences, there have been few attempts made to find similar results in non-
commutative rings. An early success in this direction is due to Amitsur [1]. We
recall below his main result, and prove a variation of it. The latter is close to the
spirit of the present note.

Now let F = C〈x1, ...,xg〉 be the freeC-algebra withg generators. LetI be a
bilateral ideal ofF and fix an orderd. Thehard zero setof I, at orderd, is

Vd(I) = {(X1, . . . ,Xn); Xj ∈Md(C),1≤ j ≤ g, f (X) = 0, f ∈ I}.

HereMd(C) is the algebra of complexd× d matrices. LetMd be the bilateral
ideal ofF generated by the relations satisfied by any pair of matrices of orderd
(defining the PI ring structure).

Amitsur’s theorem asserts that, for a fixed elementp∈ F , the inclusion

Vd(I)⊂Vd(p)

holds if and only if there exists an integerN with the property

pN ∈ I+Md.
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We propose below to free the degreed. For a rich class of left idealsI we
obtain then a stronger statement, by eliminating the need of taking any higher
power ofp. We return now to our convention of taking real scalars, noting that the
complex case can be obtained by embedding the complex numbers intoM2, the
2×2 matrices with real entries.

Thezero setof an elementq in a unital algebra is the set ordered pairs(π,γ),
whereπ : A → L (H) is a representation ofA as linear transformations on a
finite dimensionalreal vector spaceH (thus hereL (H) denotes the linear maps
onH), the vectorγ is a nonzero element ofH andπ(q)γ = 0. LetV(q) denote this
zero set. In the case thatA = F this reduces to our usual notion of zero set.

If I is a left ideal inA , the zero set ofI , denotedV(I), is the intersection, of
the zero setsV(p) for p∈ I . For a unital algebra say that a left idealI is weakly
radical if V(I)⊂V(q) impliesq∈ I .

The weakly radical condition onI can be stated in terms of the existence of
sufficiently many left idealsJ containingI . Indeed, ifπ : A →L (H) is a repre-
sentation andγ ∈ H, then

J = {a∈A : π(a)γ = 0} (3)

is a left ideal which containsI if and only if π(a)γ = 0 for everya∈ I . On the other
hand, ifJ is a left ideal, then the left regular representation induces a representation
ρ : A → L (A /J) given byρ(a)(b+ J) = (ab+ J). In this caseJ containsI if
and only ifρ(a)(1+J) = 0 for everya∈ I .

For a left idealJ in A , the codimension ofJ, denoted codim(J), is the dimen-
sion of the vector spaceA /J.

Proposition 1 A left ideal I in a unital algebraA is a weakly radical ideal if and
only if

I =
⋂
{J : J is a left ideal containing I andcodim(J) < ∞} (4)

Proof Suppose the left idealI ratifies the equality in equation (4) and thatq /∈
I . There exists a left idealJ containingI such thatq /∈ J and the vector space
H = A /J is finite dimensional. Letρ denote the left regular representation as
above. Sinceq /∈ J, it follows that ρ(q)[1] = [q] 6= 0; whereas for eacha ∈ I ,
ρ(a)[1] = [a] = 0. HenceI is a weakly radical ideal.

Conversely, supposeI is a weakly radical ideal and letq /∈ I be given. There
exists a finite dimensional vector spaceH, a representationπ : A →L (H), and
a vectorγ ∈H such thatπ(q)γ 6= 0, but at the same timeπ(a)γ = 0 for eacha∈ I .
Let J denote the left ideal as in equation (3) corresponding to the pair(π,γ). By
construction,J containsI andq /∈ J. Thus to finish the proof it only remains to
show thatJ has finite codimension.

Sincea∈ J if and only if π(a)γ = 0 the mapping fromW = {π(a)γ : a∈A }
into A /J given by π(a)γ 7→ a+ J is well defined and one-one. It is evidently
onto and is thus a vector space isomorphismS : W → A /J. SinceH is finite
dimensional so isW and henceJ has finite codimension. (As an aside, withρ

coming from the left regular representation as a above,Sπ̃(a) = ρ(a)S, whereπ̃

denotes the corresponding cyclic representation,π̃(a) = π(a)|W.) ut
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We are of course primarily interested in the weakly radical property and ac-
cordingly in the examples below this is verified by showing various ideals satisfy
equation (4). However, it is interesting to note that forA = F every finitely gen-
erated ideal is a weakly radical ideal as found in [5]. The proof, due to Bergman,
proceeds by checking the weakly radical condition directly giving little indication
of how to concretely construct the idealJ containingI but notq. On the other
hand, there are ideals inF which are not weakly radical ideals. For instance, ifI is
the two sided ideal generated by the canonical commutation relations, thenF/I is
the Weyl algebra which admits no (nontrivial) finite dimensional representations.
Indeed, the right ideal generated by the canonical commutation relations can not
be contained in any nontrivial left ideal whose codimension is finite.

For completeness we include the statement and proof of the Bergman Null-
stellensatz.

Theorem 3 ([5])Let I be a left ideal inF. If I is finitely generated (as a left ideal),
then I is weakly radical.

Proof Fix q∈F and supposep1, . . . , pn generateI as a left ideal. AssumingV(I)⊂
V(q), we will showq∈ I .

ChooseN so thatN is strictly larger than the maximum of the degrees of
{p1, . . . , pn,q}. Let PN denote the polynomials inF of degree at mostN and
likewisePN−1. The vector spaceF/I may well be infinite dimensional; however
WN, the image ofPN in F/I is finite dimensional. Similarly, letWN−1 denote the
image ofPN−1 in F/I . Let [a] = a+ I denote the class ofa ∈ F in the quotient
F/I . ThusWN = {[a] : a∈PN}. Further, ifa∈PN−1, then[a] = 0 if and only if
a∈PN−1∩ I .

BecauseWN is finite dimensional andWN−1 is a subspace there is a comple-
mentary subspaceL in WN so thatWN−1 +L = WN andWN−1∩L = (0).

Define operatorsXj : WN−1 → WN as follows. Givenw ∈ WN−1, choose any
representativea ∈ PN−1 such that[a] = w and defineXjw = [x ja]. This is well
defined since[a] = w = [b] if and only if a−b ∈ I in which casex ja− x jb ∈ I .
ExtendXj to all of WN (denoting these extended operators still byXj ) by asking
thatXj` = 0 for ` ∈L .

The tupleX = (X1, . . . ,Xn) constructed above gives rise to a representation of
F on the finite dimensional vector spaceWN. In accordance with our conventions,
this representation will be denoted asF 3 a 7→ a(X). Choosingγ = [1] as the
distinguished vector,p j(X)[1] = [p j ] = 0 for eachj sincep j ∈PN−1∩ I . That is,
(X, [1]) ∈ V(p j) for each j. Hence, as∩V(p j) ⊂ V(q), it follows thatq(X)[1] =
[q] = 0. Sinceq∈PN−1, this meansq∈ I and the proof is complete. ut

In view of the Bergman Nullstellensatz and the example of the Weyl algebra,
we ask

Question 1For which finitely generated unital algebrasA is every finitely gener-
ated left ideal a weakly radical ideal?

A series of simple examples are of independent interest.
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3.1 Commutative Algebra

If F/I is commutative, then (4) holds by Krull’s intersection theorem. Thus we
obtain a Nullstellensatz for commutative polynomials which does not involve the
radical.

In this commutative setting the(commutative) hard zero setof a polynomialp
in the commutative polynomial ringC[x1, ...,xg] consists ofg-tuples of commuting
matricesX such thatp(X) = 0 and will be denotedZ(p). The(commutative) hard
zeroset of an idealI is defined analogously and denotedZ(I).

Theorem 4 Let I be an ideal in the commutative polynomial ringC[x1, ...,xg] and
let q∈ C[x1, ...,xg] be given. Then

q∈ I if and only if V(I)⊂V(q).

This theorem is in sharp contrast to the classical Nullstellensatz which requires
the radical ideal.

Note that in the definition of weakly radical ideal it may be assumed that the
vectorγ is cyclic for the representationπ. In this case, and because of commuta-
tivity, the conditionp(X)γ = 0 for eachp ∈ I implies p(X) = 0 for eachp ∈ I .
Thus to prove Theorem 4 it suffices to show that the idealI satisfies equation (4).

Proof What matters is thatA = C[x1, . . . ,xg] is a commutative Noetherian ring
with unit with the property that ifM ⊂ A is a maximal ideal andn is a positive
integer, thenA /Mn is finite dimensional (as a vector space).

The quotientR = C[x1, . . . ,xg]/I is a unital commutative Noetherian ring with
the finiteness property above on maximal ideals. Most of the proof consists of
showing,

(0) = ∩{Mn : M a maximal ideal ofR,n∈ N+}.

Let p ∈ R, p 6= 0, be given. LetN = {x ∈ R : xp= 0}. ThenN is a proper
ideal ofR and there is a maximal idealM containingN.

Let S= R \M, the complement ofM in R. Recall the construction ofRM,
the localization ofR to M, as the quotient ringS−1R of R. This is the ring of of
quotientsr/s, for r ∈R ands∈ Swith r/s= r ′/s′ if and only if there existst ∈ S
so thatt(rs′− r ′s) = 0 and the expected ring operations.

Let φS denote the map localizingR to M; i.e.,φS : R →RM, φS(r) = rs/s, for
anys in S= R \M. The choice ofM guarantees thatφS(p) 6= 0 asφS(r) = 0 if and
only if rs = 0 for somes∈ S.

Apply a version of Krull’s intersection Lemma to the unique maximal ideal
MM of RM to conclude that∩Mn

M = (0) and hence there is an integerk so that
φS(p) /∈Mk

M = φS(Mk). Thus,p /∈ φ
−1
S (φS(Mk))⊃Mk.

To finish the proof, supposeq /∈ I so that[q], the class ofq in the quotientR,
is nonzero. From what has been proved, there exists a maximal idealM in R and
a positive integerk so that[q] /∈ Mk. There exists a maximal idealM0 ⊂ A such
thatM = M0/I . HenceMk = (Mk

0 + I)/I and thusq /∈ Mk
0 + I . SinceMk

0 has finite
codimension inR, the idealMk

0 + I has finite codimension inA . ut
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3.2 Enveloping Algebras of Semi-Simple Lie Algebras

Assume thatF/I0 = U(g) is the enveloping algebra of a semi-simple complex
Lie algebra. Due to the fact that there are sufficiently many finite dimensional
representations ofU(g), the idealI0 is weakly radical. It would be interesting to
know whetherU(g) is a candidate for a positive solution to Question 1. In other
terms, is it true that every left ideal ofU(g) is weakly radical?

3.3 Homogeneous ideals inF

We thank Dan Rogalski for suggesting the following example.
A left ideal I in F is homogeneousif it is generated (as a left ideal) by homo-

geneous elements ofF.

Theorem 5 Every homogeneous ideal inF is a weakly radical ideal.

Proof Let I be a given homogeneous left ideal. LetJ denote the (two sided) ideal
in F generated by{x1, . . . ,xn}. We claim

I = ∩{I +JN : N ∈ N+}. (5)

To prove (5), it suffices to show, ifq∈ ∩(I +JN), thenq∈ I . Accordingly, let
such aq of degreeN− 1 be given. Sinceq ∈ I + JN, there exists finitely many
homogeneous polynomialsr1, . . . , r` ∈ I (repetition allowed), monomialsmj , and
a polynomials∈ JN such that

q =
`

∑
j=1

mj r j +s.

Further, without loss of generality, it may be assumed that the degree of each
mj r j is at mostN−1 (or else it can be combined withs). Since there can be no
cancellation betweens and∑mj r j and since the degree ofq is N− 1, we have
s= 0 andq∈ I . ut

4 Commutative Hereditary Sums of Squares

We work in the algebraB= C[x∗]⊗C C[x], where the variablesx= (x1, ...,xg) com-
mute andx∗ = (x∗1, ...,x

∗
g) are commutative, but they do not commute jointly. The

anti-linear involution works on the set of linearly independent generators (prod-
ucts of monomials) as:

[x∗β ⊗xα ]∗ = x∗α ⊗xβ ,

whereα,β ∈ Ng and we use the multi-index notation. An elementq∈ B is called
ahereditary polynomial, and it can be uniquely written as a linear combination of
elementary tensors:

q(x,x∗) = ∑
α,β

Qα,β x∗β ⊗xα ,

with Qα,β ∈ C.
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If q is an hereditary polynomial andX = (X1, . . . ,Xg) is a tuple of commuting
matrices (of any size), thenq(X,X∗) defined in the natural way:

q(X,X∗) = ∑
α,β

Qα,β X∗β Xα .

Note thatX∗ denotes the adjoint tuple with respect to the inner product of the
space whereX acts.

The hereditary polynomialq is a sum of squares if there existsn andr j ∈C[x]
for j = 1, . . . ,n so that

q(x,x∗) =
n

∑
j=1

r j(x)∗⊗ r j(x)

written more succinctly asq = ∑ r∗j r j . Note, if q is a sum of squares andX is
a tuple of commuting matrices, thenq(X,X∗) � 0 (is positive semidefinite). We
have the following sums of squares criteria for hereditary polynomials.

Theorem 6 The hereditary polynomial q is a sum of squares if and only if for
every tuple of commuting matrices, q(X,X∗) is positive semidefinite.

The proof actually proves something more quantitative.
First remark thatq is a sum of squares if and only if the associated matrix

(Qα,β ) is positive semi-definite.
To prove the only non-trivial implication, assume that the hereditary polyno-

mial q∈B is not a sum of squares. Letd = max{degx q,degx∗ q}, so that the indices
running in the matrixQ satisfy|α|, |β | ≤ d. Letm denote the ideal with generators
x1, ...,xg; it is the maximal ideal corresponding to the pointx = 0. We define the
finite dimensional quotient module

H = C[x]/md+1,

wheremd+1 denotes thed+1 power of the idealm. OnH define the multiplication
operatorsXj [ f ] = [x j f ] based on the variablesx j . They commute and have the
vectorξ = [1] jointly cyclic.

Since the matrixQ is not positive semi-definite, there are complex numbers
cα , |α| ≤ d, such that

∑
α,β

Qα,β cαcβ < 0.

Choose a positiveε, small enough, so that

∑
α,β

Qα,β [cαcβ + εδα,β ] < 0,

where the latter is the Kronecker symbol. On the other hand, the matrix

Mα,β = Qα,β + εδα,β

is strictly positive definite. Define onH the Hermitian product

〈[xα ], [x∗β ]〉= Mα,β .
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In other words,
〈X∗β Xα

ξ ,ξ 〉= Mα,β .

In conclusion,
〈q(X,X∗)ξ ,ξ 〉= ∑Qα,β Mα,β < 0,

proving that there exists a g-tuple of commuting matricesX with the property that
q(X,X∗) is not positive semi-definite.

Note that the proof offers a boundN(d) on the size of matrices we have to test
positivity, assuming thatd is the degree of the polynomialq. We leave this detail
to the interested reader.

We can equally work with commutative polynomialsq(z,z) ∈ C[z,z], where
z,z are commuting variables. For instance the complex coordinates and their con-
jugates inCg. If we put by convention all adjointsX∗

j to the left ofXk, in q(X,X∗),
then the same proof applies and yields the following result.

Corollary 2 Let q∈C[z,z] be given. There exist polynomials rj ∈C[z], 1≤ j ≤ n,
with

q(z,z) =
n

∑
j=1

|r j(z)|2,

if and only if, for all commuting g-tuples of matrices X we have q(X,X∗)≥ 0.

For more details about such (hermitian, or subharmonic) decompositions, see
[12]. For noncommutative hereditary polynomials the analogous theorem is used
in Nick Slinglend’s UCSD thesis in studying the effect of noncommutative biholo-
morphic maps.

5 An Approximate Nullstellensatz on Arbitrary Varieties

In this section we propose a Nullstellensatz for an arbitrary non-commutative
polynomialq vanishing on a basic algebraic set inF. However, we pay for this
huge generality by only obtaining an approximate formula. A counterexample is
given in [5] to a Nullstellensatz as clean as Theorem 2, whenq and the defining
equationsp of the support set are not analytic.

Theorem 7 Suppose q, p1, . . . pn ∈ F, and assume that the zero set
V({p1, . . . , pn}) is non-empty. Then

V({p1, . . . , pn})⊂V(q)

if and only if there exists Cmin > 0 with the property that for each pair of real
numbers C> Cmin and λ > 0, there exist sums of squaresσ+,σ−,σ j ∈ Σ 2, j =
1,2, . . . ,n, such that

q∗q+σ+ +σ− ? (C2−∑x∗j x j) = λ +
n

∑
j=1

p∗j σ j p j . (6)
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Remark 1Notable is that this theorem applies to non-analytic polynomials, and it
does not require the key cone to have the archimedean property. The boundCmin

is defined by
Cmin = inf

(X,v)∈V({p1,...,pn})
‖X‖.

Proof We assume thatV(p) is non-empty, and consider constantsC > Cmin.
One direction is straightforward. Let(X,v) ∈ V({p1, . . . , pn}) and takeC >

‖X‖. Assume that for everyλ > 0 there exist sums of squaresσ+,σ−, andσ j (1≤
j ≤ n) so that equation (6) holds. Thus,

‖q(X)v‖2 + r+ + r− = λ

wherer− andr+ are both nonnegative. It follows that‖q(X)v‖2 ≤ λ . Sinceλ > 0
is arbitrary,q(X)v = 0.

To prove the converse, suppose thatV({p1, . . . , pn}) ⊂ V(q), fix a constant
C > Cmin and assume by contradiction that there exists aλ0 > 0 so that it is not
possible to solve equation (6). (It follows it is not possible to solve equation (6)
for λ0 > λ > 0. On the other hand, for large enoughλ the equation does have
a solution.) We will show there exists(X,v) ∈ V({p1, . . . , pn}) with v 6= 0, but
q(X)v 6= 0. This is accomplished by a familiar cone separation argument and a
GNS (Gelfand-Naimark-Segal) construction.

Let C denote the convex cone

C = {σ+ +σ− ? (C2−x∗x) : σ± ∈ Σ
2}

and letL denote the vector subspace

L = {λ + µq∗q+
n

∑
j=1

p∗j sj p j ; λ ,µ ∈ R, s= s∗}

in the vector space of all symmetric polynomials ofF. On L define the linear
functionalL : L → R by

L(λ + µq∗q+
n

∑
j=1

p∗j sj p j) = λ +λ0µ.

To verify the correctness of this definition, suppose that

λ + µq∗q+
n

∑
j=1

p∗j sj p j = 0. (7)

By evaluating equation (7) at a zero of the n-tuple(p1, . . . , pn) we find λ = 0.
If we prove thatµ = 0, then the functionalL will be well defined. Assume that
µ 6= 0. By possibly simultaneously changingsi into multiplesγsi (1≤ i ≤ n), we
can assume thatq∗q+∑n

j=1 p∗j sj p j = 0. Next we decompose eachsi as a difference
of sums of squares

si = σ
+
i −σ

−
i .

Whence

q∗q+
n

∑
j=1

p∗j σ
+
j p j =

n

∑
j=1

p∗j σ
−
j p j .
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Sinceλ0 ∈ C , this would imply that equation (6) is solvable forλ = λ0, a contra-
diction. Thus,L : L −→ R is well defined.

The immediate goal is to showL(L ∩C )≥ 0. To this end, suppose thatλ ,µ ∈
R, s∈ F is symmetric, and

r = λ + µq∗q+∑ p∗i si pi ∈ C .

Write si = σ
+
i −σ

−
i , whereσ

±
i are sums of squares. This gives,

λ + µq∗q+∑ p∗i σ
+
i pi ∈ C . (8)

Let (X,v) ∈V({p1, . . . , pn}), ‖X‖< C, so that, by assumption,q(X)v = 0. By
evaluating equation (8) on(X,v) one findsλ ≥ 0. Thus, ifµ ≥ 0, thenL(r)≥ 0 as
desired. Ifµ < 0, then, by dividing equation (8) by−1

µ
one finds

λ

−µ
+∑ p∗i

(
σ

+
i

−µ

)
pi ∈ q∗q+C ,

and thereforeλ

−µ
> λ0. Hence we again find thatL(r)≥ 0.

Therefore the linear functionalL is positive on a subspace which contains the
identity, andL(1) = 1. Since the archimedean coneC contains the order unit 1,
the linear functionalL can be extended by Corollary 9.12 on page 87 in [4] to a
C -positive linear functional on all symmetric polynomials.

We can proceed with the GNS construction. Consider the bilinear form on
polynomials inx by

〈r,s〉= L(r∗s+s∗r).

SinceL is C positive andC contains squares, this form is positive semi-definite.
Let H denote the Hilbert space obtained moding out null vectors and completing
the resultant pre-Hilbert space. Abusing notation, for a polynomials, let s denote
the class ofs in this Hilbert space. Define operatorsXj onH by declaringXjs=
x js, for polynomialss. Sinces∗(C2−x∗j x j)s∈ C and sinceL is C -positive,

C2〈s,s〉−〈x js,x js〉= L( s∗(C2−x∗j x j)s)≥ 0.

It follows thatXj passes to a well defined map modulo null vectors and then ex-
tends to the completionH . The resultant operators will still be denotedXj .

Sinceq(X)1 = q andL(q∗q) = λ0 > 0, it follows thatq(X)1 is not zero. On
the other hand, for eachj, p j(X)1 = p j andL(p∗j p j) = 0 so thatp j(X)1 = 0.

One can argue that, so far we have defined the zero set as pairs of operators
and vectors attached to a finite dimensional Hilbert space, and above we have
constructed a possibly infinite dimensional one. This anomaly can be restored by
taking the orthogonal projectionΠ of H onto the finite dimensional subspace

HN =
∨

deg(w)≤N

w(X,X∗)1,

where the linear span is taken over all wordsw of degree at mostN. The diagonal
truncationXj(N) 7→ ΠXjΠ will produce the desired finite dimensional objects.
More specifically, for every polynomialr(x,x∗) of degree less thatN we will have

r(X,X∗)1 = r(X(N),X(N)∗)1.
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Thus,V(q) does not containV({p1, . . . , pn}), a contradiction. This completes
the proof. ut

Remark 2 Denoting the left ideal associated to the set of polynomials
P = (p1, ..., pn) by FP = Fp1 + . . .+Fpn, the identity (6) in the statement of The-
orem 7 can be replaced by

q∗q∈ λ −MC2−∑x∗j x j
+sym(FP).

6 Majorization on Semi-algebraic Sets

The following theorem collects into a single statement some facts about polyno-
mial majorization based on comparing their evaluation on pairs(X,v). Similar
facts but ignoring the finer structure of keeping track of a vectorv were originally
proved in [5,7].

At this point we depart from our earlier convention, now allowing zeros ofp∈
F to consist of pairs(X,v) whereX = (X1, . . . ,Xn) is a tuple of bounded operators
on a separable Hilbert space andv∈H is a distinguished vector such thatp(X)v=
0. For clarity we use the notationV(p) andV(I) to denote this more liberal notion
of zero set ofp and the zero set of a subsetI ⊂ F.

Likewise, for a subsetS⊂ F, let KS denote those tuples(X,v), whereX is an
n-tuple of bounded operators on a common separable Hilbert spaceH andv is a
distinguished vector inH, for which〈s(X)v,v〉 ≥ 0 for all s∈ S.

Theorem 8 Let q, p1, . . . , pn ∈ symF and denote P= {p1, . . . , pn}. Let CP denote
the cone generated by p1, . . . , pn:

CP = {∑
j

t j p j : all t j ∈ R+}.

Let S denote another finite set of polynomials ( for example, S= {M2−x∗x}, with
M large), such that the quadratic module MS is archimedean.

(i) If 〈q(X)v,v〉> 0 whenever(X,v) ∈KP∩KMS, then

q∈CP +MS. (9)

Conversely, if (9) holds, then the first statement holds with〈q(X)v,v〉 ≥ 0.
In particular, KP∩KMS = /0 if and only if CP +MS = F.

(ii) (X,v) ∈ KP∩KMS implies q(X) is NOT negative semidefinite if and only if
there exist h1, ...,hm∈ F, such that

m

∑
j=1

h∗j qhj ∈ 1+CP +MS.
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(iii) (X,v) ∈ V(P)∩KMS implies q(X) is NOT negative semidefinite if and only if
there exists h1, ...,hm∈ F, such that

m

∑
j=1

h∗j qhj ∈ 1+MS+symFP.

Remark 3If (X,v) ∈ KMS andM = {h(X)v : h∈ F}, thenM is a reducing sub-
space forX (eachXj ) and s(Y) is positive semidefinite for eachs∈ S, where
Y = X|M .

Proof In each part one direction is trivial. The other side is derivable from the
same (separation and GNS scheme) proof used in§5 with the few points we now
list needing clarification. In each case we build a separating linear functionalL :
F−→ R.

Proof of (i): Assume, in virtue of Lemma 1, that the functionalL satisfies

L(q)≤ 0, L(CP +MS)≥ 0, L(1) > 0.

Build the Hilbert spaceH as the Hausdorff completion ofF with respect to〈 f ,g〉 :=
L( f ∗g+g∗ f ). Continue to proceed as in§5 by defining a set of multiplication oper-
atorsY,Yj f = x j f . These are well defined and bounded because of the archimedean
hypothesis onMS which impliesrT(1−xT

j x j)r ∈MS⊂CP+MS for eachr ∈ F and
j. The relationY∗

j f = x∗j f readily follows from the definition of the inner product.
Now 〈p j(Y)[1], [1]〉= L(2p j)≥ 0 and similarly,〈rTsr(Y)[1], [1]〉= L(2rTsr)≥

0 for s∈ Sand anyr. Hence(Y, [1]) ∈KP∩KMS, but〈q(Y)[1], [1]〉= L(q)≤ 0.

Proof of (ii): Similarly, construct by invoking Lemma 1 the functionalL with
the properties

L(h∗qh)≤ 0, L(1+CP +MS)≥ 0, L(1) > 0, h∈ F.

After defining the inner product〈 , 〉 from L and the multipliersY as before, we
again observe〈p j(Y)1,1〉= L(2p j). UseL(1+ t p j)≥ 0 for all t ∈ R+; by letting
t → ∞ to obtainL(p j) ≥ 0. Similarly, obtainL(rTsr) ≥ 0 for all r ∈ F ands∈ S.
Thus(Y, [1]) ∈KP∩KMS.

On the other hand 0≥ 〈q(Y)[h], [h]〉 = L( h∗qh) for each polynomialh ∈ F,
and sinceq(Y) is continuous andF is dense inH, the operatorq(Y) is negative
semidefinite.

In this case the archimedean hypothesis onMS and invariance under positive
scalars implies thatt + rT(1− xT

j x j)r ∈ 1+ MS⊂CP + MS for each positive real
numbert andr ∈ F and j. It follows thatL(rT(1−xT

j x j)r)≥ 0 so thatYj are well
defined and bounded.

Proof of (iii): Assume as before that

L(h∗qh)≤ 0, L(1+MS+symFP)≥ 0, L(1) > 0, h∈ F.

After constructing the inner product〈 , 〉 from L and the multipliersYj = Mx j , we
observe〈r j(Y)p j(Y)1,1〉= L(r j p j + p∗j r

∗
j ). UseL(1+ r j p j + p∗j r

∗
j )≥ 0 for all r j ;

by lettingr j → ∞ to obtainL(r j p j + p∗j r
∗
j )≥ 0. This holds for all polynomialsr j ,
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to include±r j , soL(r j p j + p∗j r
∗
j ) = 0. In particular〈p j(Y)∗p j(Y)1,1〉= 0 implies

p j(Y)1 = 0.
Computations as before show〈rTsr(Y)[1], [1]〉 ≥ 0 so that(Y, [1]) ∈ V(P)∩

KMS.
Sinceq(Y) is continuous and 0≤ L(hTqh) = 〈q(Y)[h], [h]〉 the operatorq(Y)

is negative semidefinite. ut

Proofs and statements similar to (2) and (3) above appear in [7] and more
generally in [3]. We mention that in [7] the evaluation matricesXj are all sym-
metric, while here we remain consistent with the rest of this note and leave them
unconstrained.
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