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1 Introduction

The present note is a continuation of our study of positivity in a fredgebra

[6], by further exploring Nullstelleritze and Positivstelledtze phenomena. The
parallel to the well known analogous commutative statements is striking: the free
algebra framework has sometimes simpler statements (for instance no need of
higher powers in the generic Nullstellensatz) and straightforward proofs (based on
elementary convexity techniques rather than Tarski's principle). This is partially
explained by the great flexibility of the finite dimensional representations of the
free x-algebra, which replace the more rigid point evaluations in the commutative
case.
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Let p(x,x*) be a non-commutative polynomial in the free variables (with in-
volution) (x,x*) = (X,..., %, X}, . ..,X}). Already the zero set of phas a variety
of meanings when evaluating on aftuple of reald x d matricesX, and possibly
on a vectov € R¢:

(i) {X : p(X) =0},

(i) {X: p(X) is not an invertible matri}, or

(ii)) {(X,v) : p(X)v=0}.

There are corresponding levels of notions involving positivity.

Our principal aim is to develop the third concept of zero set; the only exist-
ing result being what we call the Bergman Nullstellensatz, since it was proved
by G. Bergman, see [5], after being conjectured by the authors of [5]. Besides
their intrinsic interest and timely discovery, the results contained in this note have
potential applications to modern system theory.

1.1 Definitions

We recall here some terminology and basic notations. There are several areas of

mathematics involved and we try to use terminology which is easily learned by all

but tilt toward the conventions of Marshall [10] and the references [2] [7].
Throughout this not&N stands for the set of natural numbers @dor the

field of real numbers. We consider variables: (xa, ...,Xn), X* = (X}, ...,X}) and

the free algebr& = R(x,x*). We equipF with the canonicaR-linear involution:

()" =%0 ()" =X 1<k<n,

and(fg)* =g*f*, f,geF. A word in the variablegx,x*) will sometimes be
called amonomial A word w(x) depending only on the variables will be called
analytic an analytic polynomial ir¥ is a linear combination of analytic words.
We denote byA the subalgebra of analytic polynomialsief Note thatA is not
closed under the involution. Létbe a left ideal off. The associateslymmetrized

subspacés
syml)={f+f"; fel}.

If p={p1,...,Pm} € FMis a set of polynomials, then we denotelbyg = Fp; +
...+ Fpm the left ideal generated by;.

The algebrdF carries an important intrinsic order given by the cone of sums
of squares. Asum of square§SOS)o is, as the name suggests, an expression of

the form
N

o= zls]-‘sj, Q)
J:

where eacls; € F = R(x,x*), andN is a natural number. The set of all sums
of squares irff is customarily denoted b?. It is a convex cone, the smallest
positivity cone in thex-algebraF.

A polynomial p is symmetric if p = p*. The linear space of abymmetric
polynomialswill be denoted by syt If also o is a sum of squares as in equation
(1) and if pis a symmetric polynomial, define

oxp= ZS]‘psj.
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We will evaluate polynomiald in F to n-tuples of matrices. Specifically, if
X =(Xq,..., %) € Mg(R)" is a set ofd x d real matrices, we denote by the
corresponding adjoints (i.e. transposes), and 6§t X*) to be the corresponding
d x d matrix. We will freely interpretf (X, X*) as a linear operator oRY. The
notationf (X, X*) > 0 means non-negativity in the operator sense.

Thezero sebf a left ideall C FF is by definition

V(1) ={(X,v) € [ JMg(R)"xRY); v£0, f(X)v=0, all f €1}.
d>1

We use the same notatidi{S) for the common zero set of all polynomials belong-
ing to a selSC F. As an obvious observatiofiX, V) is a zero ofc = 3 s'sj € X2
if and only if (X, V) is a zero of each;.

Let Sc symF. Thepositivity set of $s by definition

Ks={(X,v) € | J(Ma(R)"xR?); v#£0, (f(X)v, v) >0, all f € S}.
d>1

Thequadratic moduleassociated to a s&c syniF is

Ms={} hifih; fi e SU{1}, hi e F}.
1

By definition, a quadratic moduMs is archimedearif there exist > 0 with the
propertyC2 —xix; — ... — XX, € Ms. In particular, but not equivalently, there exists
aC such that ifs(X) is positive semidefinite for ai € S, then||(Xz,...,Xy)| <C.
Operator theorists often call a cone with this type of propatigorbing More
specifically, this means for a convex colecC FF that the element 1 belongs its
algebraic interior. for everyf € IF there exista. > 0 with the property + A f € M.
In the context of the algebr@ and assuming that the convex cone contains all
sums of squares and is closed with respect to conjugations there is no distinction
between archimedean and absorbing which is readily proved starting from the
observation thaf?(C? —ww*) = (C? —ww*)2 + w(C? — w*'w)w".

One of the basic technical lemmas involved in all recent proofs pertaining to
positivity aspects in a free-algebra is a Minkowski separation argument. We
isolate it below for the convenience of the reader.

Lemma 1 Suppose MC F is closed with respect to positive linear combinations;
i.e., if pge M and st > 0, then sp+tq € M. If 1 belongs to the algebraic interior
of M, if C is a convex cone and@M C {0}, then there exists a linear functional
L :F — R such that

L(g) <0<L(p), g€C, peM,
and L(1) > 0.

Proof Let S=C— M+ 1. ThenSis a convex set. The hypothesis that 1 is an
algebraic interior point oM implies thatSis absorbing: giverf € F there exists

t > 0sothat -t(—f) € M so thattf € —-M+1 c C—M+ 1. Consequently it
makes sense to talk of the Minkowski functionedf Sso thatp(x) = inf{t > 0:

¥ € S}. In particular,p(1) > 1.
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Define A(t1) =t on the one dimensional subspacefo§panned by 1. One
readily checks thad (t1)| < p(t1) and hencél extends to a linear functional
onFF satisfyingL < p. In particularL <1 onS

Forme M andc € C,

L(c)—L(m+1=L(c—m+1) <p(lc—-m+1) <1

Hencel (c) < L(m).
BecauseC is a cone it follows that(C) < 0 < L(M) and at the same time
L(1)=1>0. O

The discovery of this result goes back to Eidelheit and Kakutani (see for in-
stance [8]§17.1(3)). In this form it is due to Koethe. Its versatility was indepen-
dently remarked by M. Krein [9].

1.2 Outline of Results

We give five classes of results.

e Section 2 concerns a non-commutative polynomgiathich is nonnegative on
the zero seY (p) of a set of analytic polynomialpy, - - -, pm. Our proof relies
on an extension lemma for tuples of matrices.

e In section 3 we propose an abstract Bergman type Nullstellensatz. Key here
is that zero sets involve tuples of operators on finite dimensional spaces of all
dimensions. Notably this produces a radical free Nullstellensatz of interest in
the commutative case.

e Section 4 gives a sums of squares criteria for hereditary polynomials (those
with adjoint/transpose variables all to the left of the untransposed variables)
involving zero sets of tuples of commuting matrices.

e Section 5 gives a Nullstellensatz for arbitrary polynomials. However, we pay
for this generality by getting an approximate formula. Again zero sets based
on finite dimensional matrix spaces sulffice.

e The last section, see Section 6, concerns the behavior of a polyngish
“noncommutative semialgebraic set”. In this section the results demand con-
sideration of tuples of bounded operatofson a possibly infinite dimen-
sional space rather than only tuples of matrices. Also the last topic requires
an archimedean assumption, while the others do not.

The title of this paper reflects thaf (X)v,v) > 0 implies (g(X)v,v) > 0 is
a stronger statement thdifX) is positive semidefinite implieg(X) is positive
semidefinite.

2 A Nichtnegativstellensatz on “Analytic Varieties”

We use the notation and conventions introduced in the preceding section.

Theorem 1 (Nichtnegativstellensatz). Let pe A™ and assume that g symF
satisfies \(p) C K(q. Then

qe X?+symFp).
If in addition, (q(X)v,v) = 0, for every(X,v) € V(p), then ge sym(Fp).
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The following fact, of independent interest, appears as a necessary step in the
proof of the preceding result.

Theorem 2 (Nullstellensatz). Let pe A™and ge F. If V(p) C V(q), then ge
Fp.

Note that in the latter theoremneed not be symmetric.

The strategy and main parts of the proof of Theorem 1 are modeled after those
in [6], and we will not repeat them. Instead, we will simply point out the novelty
needed to treat the more general situation covered by the new Nichtnegativstel-
lensatz. First we will need to prove Theorem 2. Towards this end we start with an
operator extension lemma.

Lemma?2 Let x= {Xg,..., %}, Y= {Y1,...,¥n} be free, non-commuting vari-
ables. Let H be a finite dimensional Hilbert space, and let X be an n-tuple of
linear operators acting on H. Fix a degree>d 1 and let Z be the set of all words
in x,y, starting to the right with ajy 1 < j <n, and of degree at most d.

Then there exists a larger finite dimensional Hilbert space K, an n-tuple
of linear transformationx acting on K, such that

Xilw=Xj, 1<j<n,

and the subspaces
Z(X, X"V H = {z(X,X*)u; ue H}

are linearly independent; that is for every choipg : ze ZU {1},u, € H} # {0}
(i.e., for each nonzero function:Z U {1} — H) the set

{z(X,X*)up, ze ZU{1}},
is linearly independent.

Proof As a matter of notation, ldtv| denote the length of a wond and let.%
denote the polynomials iR of degree at modl. View .%4 as a the Hilbert space
with orthonormal basis the words of length at mdst.etK = .4 ® H. Identify
H isometrically as a subspacekivia the embedding — 1® h. More generally,
let H; denote the span div® h: |w| = j,h € H}. With this notationH = Ho and
K = ®?:0H] .

The extended operatoX§ : K — K will have a three diagondtl + 1) x (d +
1) block-matrix structure:
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The linear operator(k),B;(k) : H — H’ will be chosen later. This construc-
tion assures the validity of the first requirement in the statementxifis a mono-
mial (i.e. word) in the variables, andu € H, then

w(X)u=w(X)u.

Let z(x,y) = z,.z,_,..-.z, be a word in the variablegy, that is iy, iz,...,im €
{1,2,...,n} andz = x or z = y. Assume that the rightmost variable in the word is
ay:z, =YVi- ~ o~

Next we evaluate(X,X*) at a vectoru € H C K, starting to read the worz
from the right. First we encounter an element of the form

X* 0 0 0 u Xfu
A(l) 0 Bj2* 0 0 A(1)u
Xeu=| 0 A@ 0 B3 0f_ 0
0 0 A3 O 0 0

whereC;, (k) = A, (k) if z, =y, andC;, (k) = B; (k) if z, = X, (in the wordz2).
We claim that one can choose the linear operatg(k) andBj(k), so that all
possible compositions

C,(m)...C,(2C,(1):H — Hm, (C=Ao0rB) 2

of lengthm (m < d) are injective and have mutually orthogonal ranges. Explic-
itly, defineAj(k) : Hj_1 — Hj by Aj (k) (w(x,y) ® h) = [(y;w(x,y)) @ h| forhe H
and degw) = k—1; and similarlyB; (k) (w(x,y) ® h) = [(x;w(x,y)) ® h] for h e
H, degw) =k-1.
To complete the proof, suppose ZU {1} — H is a nonzero function and
consider the sums .
sp= Y zZ(X,X")u,

|2=]
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ands = y3s;. Note thatP,,sy is a linear combination of terms like in equation
(2) with products of lengtll. Consequentlysy = 0 if and only ifu, = 0 for each
|zl = d. Similar reasoning then shows tlet 0 if and only ifu = 0 and the proof
is complete. O

Corollary 1 Let x={xq,...,%}, Y= {V1,-..,Yn} be free, non-commuting vari-
ables. Let H be a finite dimensional Hilbert space, and Igt %e two n-tuples of
linear operators acting on H. Fix a degree>d 1.

Then there exists a larger finite dimensional Hilbert space I, an n-tuple
of linear transformation& acting on K, such that

Xilh =X, 1<j<n,
and for every polynomial g R(x,y) of degree at most d and vector\H,
p(X,X*)v=0 = p(X,Y)v=0.

Proof Let X denote a tuple of matrices as constructed in Lemma 2.
In order to prove the second statement, let us decompose the non-commutative
polynomialp(x,y) as follows:

p(x,y) = 22<X, y) f2(x),

zc

wheref,(x) is a polynomial in the variablesand the word:(x,y) € Z starts to the
right with ay; (or is a scalar). Assume that the vectar H satisfies

0# p(X,Y)v="3 z(X,Y) f(X)v.

In particular not all vectors,(X)v € H are zero; i.e., the functiom: ZU {1} — H
given byz+— u, = f,(X)vis nonzero. From Lemma 2 it follows that

PXY)v="5 2ZXY)f(X)v#0.
zeZU{1}

Proof (of Theorem 2). If the polynomigj in the statement is analytic, then the
result follows from the Bergman Nullstellensatz, Theorem 3 below. Because it
plays a central role in the next section, and because it is needed here, we have
included the proof in Section 3 below.

We will reduce the general case goanalytic, with the help of our dilation
lemma. Assume that, for all € N and pairs(X,v) € Mg(R)" x R,

m
le| p; OV =0 = q(X,X")v=0.
j=

Fix (X,v) such thaty T, [|p;(X)v|| = 0 and letY € My(R)" be an arbitraryn-
tuple ofd x d matrices. In view of the above corollary, there exists a larger (finite



8 Helton-McCullough-Putinar

dimensional) spack? c K, and am-tupleX of linear operators acting df, such
that
0=p(X)v=pj(X)v, 1<j<m
and therefore L
g(X,X*)v=0 =q(X,Y)v=0.

Thus, the stated Nullstellensatz for analytic polynomials in the varigklgs

applies:
m

axy) = ];rj (%,Y)pj (%),

wherer; € R(x,y), 1< j <m.Inother terms, by replacing= x*, we findq € Fp
and the proof is complete. a

Proof ( of Theorem 1). At this stage we can simply repeat, word by word, the
proof of the main result in [6]. We simply remark that Theorem 2 implies, under
the assumption and notation in Theorem 1,

k
Z (%, x")* f;(x,x") € symFp)
=

is equivalent to
V(pla"'a pm) Cv(fla ey fk)

3 Non-commutative Nullstellengitze

Compared to the domain marked by Hilbert's Nullstellensatz and its many con-
sequences, there have been few attempts made to find similar results in non-
commutative rings. An early success in this direction is due to Amitsur [1]. We
recall below his main result, and prove a variation of it. The latter is close to the
spirit of the present note.

Now letF = C(x,...,Xq) be the freeC-algebra withg generators. Led be a
bilateral ideal off" and fix an orded. Thehard zero sebf 7, at orderd, is

Va(T) = {(X,..., X0); X € Mg(C),1< j <g, F(X)=0,f €T}

Here My(C) is the algebra of compled x d matrices. Lethty be the bilateral
ideal of IF generated by the relations satisfied by any pair of matrices of drder
(defining the PI ring structure).

Amitsur’s theorem asserts that, for a fixed elemegstF, the inclusion

Ba(J) € Va(p)
holds if and only if there exists an integdrwith the property

pY € T+ My.



Strong Majorization in a Free— Algebra 9

We propose below to free the degréeFor a rich class of left ideals we
obtain then a stronger statement, by eliminating the need of taking any higher
power of p. We return now to our convention of taking real scalars, noting that the
complex case can be obtained by embedding the complex numbend.inthe
2 x 2 matrices with real entries.

Thezero sebf an element in a unital algebra is the set ordered pdirsy),
wherern : o — Z(H) is a representation of7 as linear transformations on a
finite dimensionateal vector spackl (thus hereZ(H) denotes the linear maps
onH), the vectory is a nonzero element &f andz(q)y = 0. LetV (q) denote this
zero set. In the case that = [ this reduces to our usual notion of zero set.

If I is a left ideal ine7, the zero set of, denotedV (1), is the intersection, of
the zero set¥ (p) for p € |. For a unital algebra say that a left idéak weakly
radical if V() Cc V(q) impliesqe I.

The weakly radical condition ohcan be stated in terms of the existence of
sufficiently many left ideald containingl. Indeed, ifr : &7 — Z(H) is a repre-
sentation ang € H, then

J={ac « :n(a)y=0} 3)

is a left ideal which containksif and only if z(a)y = 0 for everya € |. On the other
hand, ifJ is a leftideal, then the left regular representation induces a representation
p: o — £ (/J) given byp(a)(b+J) = (ab+J). In this casel containsl if
and only ifp(a)(1+J) =0 for everyae |.

For a left ideall in <7, the codimension aof, denoted codirfd), is the dimen-
sion of the vector space’ /J.

Proposition 1 A left ideal | in a unital algebraz is a weakly radical ideal if and
only if

| =({J:Jis aleftideal containing | andodim(J) < co} (4)

Proof Suppose the left idedl ratifies the equality in equation (4) and tra#

I. There exists a left ideal containingl such thatq ¢ J and the vector space
H = & /J is finite dimensional. Lep denote the left regular representation as
above. Since ¢ J, it follows that p(q)[1] = [g] # O; whereas for each € I,
p(a)[1] = [a] = 0. Hencd is a weakly radical ideal.

Conversely, suppodeis a weakly radical ideal and let¢ | be given. There
exists a finite dimensional vector spadea representation : o/ — . (H), and
a vectory € H such thatr(q)y # 0, but at the same time(a)y = 0 for eacha e |.
Let J denote the left ideal as in equation (3) corresponding to the(pajr). By
constructionJ containsl andq ¢ J. Thus to finish the proof it only remains to
show that) has finite codimension.

Sincea € J if and only if =(a)y = 0 the mapping fronW = {z(a)y:ac &/}
into <7 /J given by w(a)y — a+ J is well defined and one-one. It is evidently
onto and is thus a vector space isomorphSmW — «7/J. SinceH is finite
dimensional so iV and hencel has finite codimension. (As an aside, wjth
coming from the left regular representation as a ab8u¢a) = p(a)S, where®
denotes the corresponding cyclic representatign) = x(a)|w-.) O
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We are of course primarily interested in the weakly radical property and ac-
cordingly in the examples below this is verified by showing various ideals satisfy
equation (4). However, it is interesting to note that £dr= F every finitely gen-
erated ideal is a weakly radical ideal as found in [5]. The proof, due to Bergman,
proceeds by checking the weakly radical condition directly giving little indication
of how to concretely construct the idehlcontainingl but notg. On the other
hand, there are ideals lhwhich are not weakly radical ideals. For instance,igf
the two sided ideal generated by the canonical commutation relationsF thés
the Weyl algebra which admits no (nontrivial) finite dimensional representations.
Indeed, the right ideal generated by the canonical commutation relations can not
be contained in any nontrivial left ideal whose codimension is finite.

For completeness we include the statement and proof of the Bergman Null-
stellensatz.

Theorem 3 ([5])Let | be aleftideal irfF. If | is finitely generated (as a left ideal),
then | is weakly radical.

Proof Fix g€ F and suppose;, ..., pnr generate as a leftideal. Assuming(l) C
V(q), we will showq € 1.

ChooseN so thatN is strictly larger than the maximum of the degrees of
{p1,---,Pn,q}. Let Ly denote the polynomials ifif of degree at mosN and
likewise &\ _;. The vector spacE/I may well be infinite dimensional; however
#N, the image ofZy in /I is finite dimensional. Similarly, [e¥y_1 denote the
image of Zy_1 in F/I. Let [a] = a+ | denote the class af € I in the quotient
F/1. Thus#y = {[a] : a€ Pn}. Further, ifae #y_1, then[a] = 0 if and only if
ac Pn_1nl.

Because# is finite dimensional andy_; is a subspace there is a comple-
mentary subspacg’ in # so that#_1+.Z = #y and#y_1N.Z = (0).

Define operator¥; : #n-1 — #u as follows. Giverw € #4_1, choose any
representative € #y_1 such thata) = w and defineX;w = [x;a]. This is well
defined sincda] = w = [b] if and only ifa—b € | in which casexja—xjb € 1.
ExtendX; to all of # (denoting these extended operators stilDgy by asking
thatX;¢ =0forl c ..

The tupleX = (Xg,...,X,) constructed above gives rise to a representation of
IF on the finite dimensional vector spaig,. In accordance with our conventions,
this representation will be denoted Bs> a — a(X). Choosingy = [1] as the
distinguished vectomp; (X)[1] = [p;] = O for eachj sincepj € Zn_1NI. That s,
(X,[1]) € V(pj) for eachj. Hence, as\V(p;) C V(q), it follows thatq(X)[1] =
[g] = 0. Sinceq € H\_3, this meang € | and the proof is complete. a

In view of the Bergman Nullstellensatz and the example of the Weyl algebra,
we ask

Question 1For which finitely generated unital algebrasis every finitely gener-
ated left ideal a weakly radical ideal?

A series of simple examples are of independent interest.
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3.1 Commutative Algebra

If F/I is commutative, then (4) holds by Krull's intersection theorem. Thus we
obtain a Nullstellensatz for commutative polynomials which does not involve the
radical.

In this commutative setting theommutative) hard zero set a polynomialp
in the commutative polynomial rin@[x1, ..., Xg] consists ofy-tuples of commuting
matricesX such thatp(X) = 0 and will be denoted (p). The(commutative) hard
zeroset of an ideal is defined analogously and denot&d).

Theorem 4 Let | be an ideal in the commutative polynomial ri@gxs, ..., Xg] and
let g€ C[xy, ..., Xg] be given. Then
qe lifandonly if V() C V(q).

This theorem is in sharp contrast to the classical Nullstellensatz which requires
the radical ideal.

Note that in the definition of weakly radical ideal it may be assumed that the
vectory is cyclic for the representatiom. In this case, and because of commuta-
tivity, the conditionp(X)y = 0 for eachp € | implies p(X) = 0 for eachp € I.

Thus to prove Theorem 4 it suffices to show that the idealtisfies equation (4).

Proof What matters is that? = C[xq,...,Xg] is @ commutative Noetherian ring
with unit with the property that iM C o is a maximal ideal and is a positive
integer, thenzz /M" is finite dimensional (as a vector space).

The quotientZ = C[xy, ..., Xg]/l is a unital commutative Noetherian ring with
the finiteness property above on maximal ideals. Most of the proof consists of
showing,

(0) =N{M": M a maximal ideal ofZ,n € N*}.

Let pe Z, p# 0, be given. LeN = {x € % : xp=0}. ThenN is a proper
ideal ofZ and there is a maximal ide® containingN.

Let S= %\ M, the complement oM in #. Recall the construction oy,
the localization of#Z to M, as the quotient rin§ 1% of %. This is the ring of of
quotientsr/s, forr € Z ands € Swith r/s=r’/s if and only if there exist$ € S
so thatt(rs' —r’s) = 0 and the expected ring operations.

Let ¢s denote the map localizing to M; i.e., ¢s: Z — %, ¢s(r) =rs/s, for
anysin S=.2\ M. The choice oM guarantees thais(p) # 0 as¢s(r) = 0 if and
only if rs=0 for somese S

Apply a version of Krull's intersection Lemma to the uniqgue maximal ideal
Mwm of Zw to conclude thanhMy, = (0) and hence there is an intedeso that
9s(p) & Myj = ¢s(M¥). Thus,p ¢ 95 *(#s(M*)) > M.

To finish the proof, supposg¢ | so that|g], the class ofjin the quotientZ,
is nonzero. From what has been proved, there exists a maximaNtiea#? and
a positive integek so that[g] ¢ M*. There exists a maximal idelly C .7 such
thatM = Mo/1. HenceMX = (M§+1)/1 and thusg ¢ M + 1. SinceM§ has finite
codimension inZ, the idealM§ +1 has finite codimension in7. O
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3.2 Enveloping Algebras of Semi-Simple Lie Algebras

Assume thaf/lp = U(g) is the enveloping algebra of a semi-simple complex
Lie algebra. Due to the fact that there are sufficiently many finite dimensional
representations df (g), the ideally is weakly radical. It would be interesting to
know whethelU (g) is a candidate for a positive solution to Question 1. In other
terms, is it true that every left ideal bf(g) is weakly radical?

3.3 Homogeneous idealsh

We thank Dan Rogalski for suggesting the following example.
A leftideall in F is homogeneous it is generated (as a left ideal) by homo-
geneous elements Bbf

Theorem 5 Every homogeneous ideallihis a weakly radical ideal.

Proof Let| be a given homogeneous left ideal. Uedenote the (two sided) ideal
in F generated byx,...,X,}. We claim

l=n{l+IN:NeN'}. (5)

To prove (5), it suffices to show, if € N(I +JV), theng € I. Accordingly, let
such aq of degreeN — 1 be given. Since € | +JV, there exists finitely many
homogeneous polynomiats,...,r, € | (repetition allowed), monomials;, and
a polynomials € JN such that

L
q= ijr,- +s.
]:

Further, without loss of generality, it may be assumed that the degree of each
mjr; is at mostN — 1 (or else it can be combined wit). Since there can be no
cancellation betwees and y m;r; and since the degree gfis N — 1, we have
s=0andgel. O

4 Commutative Hereditary Sums of Squares

We work in the algebr8 = C[x*] @c C[x], where the variables= (x1, ..., Xg) com-
mute and” = (X3, ...,Xg) are commutative, but they do not commute jointly. The
anti-linear involution works on the set of linearly independent generators (prod-
ucts of monomials) as:

[X*ﬁ ®Xa]* — x*¢ ®Xﬁ,

wherea, § € N9 and we use the multi-index notation. An elemgr B is called
ahereditary polynomialand it can be uniquely written as a linear combination of
elementary tensors:

qxx7) =% Qupx? @ x*,
(X.ﬁ

with Qg 5 € C.
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If qis an hereditary polynomial andl= (Xy,...,Xg) is a tuple of commuting
matrices (of any size), theg(X, X*) defined in the natural way:

q(X,X*) = %Qa,ﬁX*ﬁX“.
a,

Note thatX* denotes the adjoint tuple with respect to the inner product of the
space wher& acts.

The hereditary polynomiaj is a sum of squares if there existandr; € C[x|
for j=1,...,nso that

n

X) =S (X @
q(%,x") ];h(x) rj(x)

written more succinctly ag = 3 rjr;. Note, if g is a sum of squares arXi is
a tuple of commuting matrices, theyiX, X*) > 0 (is positive semidefinite). We
have the following sums of squares criteria for hereditary polynomials.

Theorem 6 The hereditary polynomial q is a sum of squares if and only if for
every tuple of commuting matriceg)qX*) is positive semidefinite.

The proof actually proves something more quantitative.

First remark thafy is a sum of squares if and only if the associated matrix
(Qq.p) is positive semi-definite.

To prove the only non-trivial implication, assume that the hereditary polyno-
mial g € Bis not a sum of squares. Lét= max{deg, g, deg. q}, so that the indices
running in the matrQ satisfy|¢|, || < d. Letm denote the ideal with generators
X1,...,Xg; it is the maximal ideal corresponding to the paint 0. We define the
finite dimensional quotient module

H = C[x/m%*?,

wherem?*! denotes the + 1 power of the ideah. OnH define the multiplication
operatorsX;[f] = [x; f] based on the variableg. They commute and have the
vectoré = [1] jointly cyclic.

Since the matribXQ is not positive semi-definite, there are complex numbers
Cu, |@] <d, such that

z Qu,pCaCp < 0.
o,p
Choose a positive, small enough, so that

> Qup[CaCh +€684,5] <O,
a,p

where the latter is the Kronecker symbol. On the other hand, the matrix
M(x.ﬁ = Qa,ﬁ + 8605,[3

is strictly positive definite. Define o the Hermitian product

(1), [XP]) = Mag.
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In other words,
(XPXAEEY =Mgp.

In conclusion,
<q(XaX*)§7€> = ZQa,ﬁMa,ﬁ < Oa

proving that there exists a g-tuple of commuting matriéesgith the property that
g(X, X*) is not positive semi-definite.

Note that the proof offers a boumd{d) on the size of matrices we have to test
positivity, assuming thad is the degree of the polynomigl We leave this detail
to the interested reader.

We can equally work with commutative polynomiaj&z,z) € C[z 7], where
Z,zare commuting variables. For instance the complex coordinates and their con-
jugates inC9. If we put by convention all adjoints" to the left ofX, in q(X, X*),
then the same proof applies and yields the following result.

Corollary 2 Letqge C|z 2] be given. There exist polynomialsg C[z], 1< j <n,
with

q(z2) = I;IH(Z)I :

if and only if, for all commuting g-tuples of matrices X we hay,.<*) > 0.

For more details about such (hermitian, or subharmonic) decompositions, see
[12]. For noncommutative hereditary polynomials the analogous theorem is used
in Nick Slinglend’s UCSD thesis in studying the effect of noncommutative biholo-
morphic maps.

5 An Approximate Nullstellensatz on Arbitrary Varieties

In this section we propose a Nullstellensatz for an arbitrary non-commutative
polynomialq vanishing on a basic algebraic setihHowever, we pay for this
huge generality by only obtaining an approximate formula. A counterexample is
given in [5] to a Nullstellensatz as clean as Theorem 2, wihand the defining
equationy of the support set are not analytic.

Theorem 7 Suppose s, ... p, € F, and assume that the zero set
V({py,-..,pn}) is non-empty. Then

V({Pz,-...pn}) CV(a)

if and only if there exists G, > 0 with the property that for each pair of real
numbers C> Cnin and A > 0, there exist sums of squares,o_, o € X2 j=
1,2,...,n, such that

n
q*q+a++c_*(C2—2x]‘xj):A+ij*6jpj. (6)
]:
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Remark 1Notable is that this theorem applies to non-analytic polynomials, and it
does not require the key cone to have the archimedean property. The Ggund
is defined by

Crnin = o o [IXI-

Proof We assume that(p) is non-empty, and consider consta@ts- Cmjn.

One direction is straightforward. LéX,v) € V({ps,...,pn}) and takeC >
| X||. Assume that for every > O there exist sums of squares, c_, ando; (1 <
j < n) so that equation (6) holds. Thus,

laO)VIZ 41+ =2

wherer__ andr, are both nonnegative. It follows thig(X)v||> < A. SinceA >0
is arbitrary,q(X)v = 0.

To prove the converse, suppose tWdt{ pi,..., pn}) C V(Q), fix a constant
C > Cnin and assume by contradiction that there existg & 0 so that it is not
possible to solve equation (6). (It follows it is not possible to solve equation (6)
for 4o > A > 0. On the other hand, for large enoughthe equation does have
a solution.) We will show there existX,v) € V({pi,..., pn}) with v # 0O, but
g(X)v # 0. This is accomplished by a familiar cone separation argument and a
GNS (Gelfand-Naimark-Segal) construction.

Let ¢ denote the convex cone

¢ ={0, +0_ x(C>°—x'x): 0, € X?}

and let.Z denote the vector subspace
n
L ={A+uqq+ le’j*s,- pj; AL, ueER, s=s}
=

in the vector space of all symmetric polynomialsiofOn .Z define the linear
functionallL : . — R by

n
L(A +pg'q+ Zstj pj) = A+ Aoit.
J:
To verify the correctness of this definition, suppose that
n
A+uga+ Zp]‘sj pj = 0. @)
J:

By evaluating equation (7) at a zero of the n-tupfs,...,p,) we findA = 0.
If we prove thaty = 0, then the functional will be well defined. Assume that
u # 0. By possibly simultaneously changiggnto multiplesys (1 <i <n), we
can assume thatq+3'_; pj'sj p; = 0. Next we decompose eastlas a difference
of sums of squares

S=0; —0 .

Whence . .
a'q+ Y pjoi'pi = pjo; p;.
1; I 1; i9j
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Sincelp € ¥, this would imply that equation (6) is solvable for= Ay, a contra-
diction. ThusL : . — R is well defined.

The immediate goal is to shaw(.ZN%’) > 0. To this end, suppose thatu €
R, se [F is symmetric, and

r=2A+pq'gq+y pispes.
Writes = 6" — 6, wheres;" are sums of squares. This gives,

A+upgq+y pioi piec. ®)

Let (X,v) e V({p1,---,Pn}), IX]| <C, so that, by assumptiog(X)v= 0. By
evaluating equation (8) ofX,v) one findst > 0. Thus, ifu > 0, thenL(r) >0 as
desired. Ifu < 0, then, by dividing equation (8) byhé one finds

A L[ o" .
_—“+Zpi (_'“> piEAA+TE,

and therefore}—“ > Ao. Hence we again find that(r) > 0.

Therefore the linear functionalis positive on a subspace which contains the
identity, andL(1) = 1. Since the archimedean co#écontains the order unit 1,
the linear functional can be extended by Corollary 9.12 on page 87 in [4] to a
¢ -positive linear functional on all symmetric polynomials.

We can proceed with the GNS construction. Consider the bilinear form on
polynomials inx by

(r,s) =L(r*s+s'r).
Sincel is ¥ positive ands” contains squares, this form is positive semi-definite.
Let .s# denote the Hilbert space obtained moding out null vectors and completing
the resultant pre-Hilbert space. Abusing notation, for a polynosyiak s denote
the class okin this Hilbert space. Define operatofs on 77" by declaringXjs =
Xjs, for polynomialss. Sinces* (C? - X{Xj)s€ ¢ and since. is ¢-positive,

C%(s,s) — (x;5,%jS) = L(s(C*—xx})s) > 0.

It follows that X; passes to a well defined map modulo null vectors and then ex-
tends to the completios?’. The resultant operators will still be denoted

Sinceq(X)1 =g andL(g*q) = A > 0, it follows thatq(X)1 is not zero. On
the other hand, for each p;(X)1 = p; andL(pjp;) = 0 so thatp;(X)1=0.

One can argue that, so far we have defined the zero set as pairs of operators
and vectors attached to a finite dimensional Hilbert space, and above we have
constructed a possibly infinite dimensional one. This anomaly can be restored by
taking the orthogonal projectidil of 7# onto the finite dimensional subspace

A=\ w(X,X)1,
degw)<N

where the linear span is taken over all wovdsf degree at mod\l. The diagonal
truncationX;(N) — ITX;IT will produce the desired finite dimensional objects.
More specifically, for every polynomialx, x*) of degree less thal we will have

F(X,X*)1=r(X(N),X(N)*)L
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Thus,V(q) does not contaiW ({ps, ..., Pn}), @ contradiction. This completes
the proof. 0

Remark 2 Denoting the left ideal associated to the set of polynomials
P=(py,..., Pn) byFP=TFp; +...+Fpp, the identity (6) in the statement of The-
orem 7 can be replaced by

0'd€ A —Mcz_yyx +SYmEP).

6 Majorization on Semi-algebraic Sets

The following theorem collects into a single statement some facts about polyno-
mial majorization based on comparing their evaluation on p@rs). Similar
facts but ignoring the finer structure of keeping track of a vectgere originally
proved in [5,7].

At this point we depart from our earlier convention, now allowing zeros of
IF to consist of pairgX,v) whereX = (X, ..., X,) is a tuple of bounded operators
on a separable Hilbert space and H is a distinguished vector such thaiX)v =
0. For clarity we use the notatid¥i(p) andV(l) to denote this more liberal notion
of zero set ofp and the zero set of a subdet F.

Likewise, for a subseb C F, let Ks denote those tupleg,v), whereX is an
n-tuple of bounded operators on a common separable Hilbert $pacelyv is a
distinguished vector ik, for which (s(X)v,v) > 0 for allse S

Theorem 8 Let g py,..., pn € SynF and denote P= {py,..., pn}. Let G- denote
the cone generated by p. ., pn:

Co={>tipj: alltjeR"}.
]
Let S denote another finite set of polynomials ( for exampte{BI2 — x*x}, with
M large), such that the quadratic moduleshs archimedean.
(i) If (g(X)v,v) > 0wheneve(X,v) € KpNKys, then
geCp+Ms. 9

Conversely, if (9) holds, then the first statement holds {gjtX )v,v) > 0.
In particular, Kp NKy, = 0 if and only if G + Mg =F.

(i) (X,v) € Kp NKy, implies dX) is NOT negative semidefinite if and only if
there exist iy, ..., hy, € F, such that

m
high; € 1+ Cp + Ms.
2
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(i) (X,v) € V(P)NKy, implies d X) is NOT negative semidefinite if and only if
there exists h ..., hy, € IF, such that

m
Z highj € 1+ Ms+symFP.
=1

Remark 3If (X,v) € Ky, and.# = {h(X)v:h e F}, then.# is a reducing sub-
space forX (eachX;) ands(Y) is positive semidefinite for eache S, where
Y =X|,.

Proof In each part one direction is trivial. The other side is derivable from the
same (separation and GNS scheme) proof usé8 inith the few points we now
list needing clarification. In each case we build a separating linear functianal
F—R.

Proof of (i): Assume, in virtue of Lemma 1, that the functiohalatisfies

L(@) <0, L(Co+Ms)>0, L(1)>0.

Build the Hilbert spacél as the Hausdorff completion fwith respecttd f,g) :=

L(f*g+g*f). Continue to proceed as 5 by defining a set of multiplication oper-

atorsY,Y; f =x; f. These are well defined and bounded because of the archimedean

hypothesis oMs which impliesr T (1—x] x;)r € Ms C Cp +Ms for eachr € F and

j- The relationy; f = x; f readily follows from the definition of the inner product.
Now (p;(Y)[1],[1]) = L(2p;) > 0 and similarlyr "sr(Y)[1],[1]) = L(2rTsr) >

0 forse Sand anyr. Hence(Y, [1]) € Kp N K, but(q(Y)[1],[1]) = L(q) <O0.

Proof of (ii): Similarly, construct by invoking Lemma 1 the functiomavith
the properties

L(h*gh) <0, L(1+Cp+Ms) >0, L(1)>0, heF.

After defining the inner produgt, ) from L and the multipliers as before, we
again observep;(Y)1,1) = L(2p;j). UseL(1+tp;) > O for allt € R™; by letting
t — o to obtainL(p;) > 0. Similarly, obtainL(r"sr) >0 forallr € F andse S
Thus(Y,[1]) € Kp N K.

On the other hand & (q(Y)[h], [h]) = L( h*gh) for each polynomiah € T,
and sinceq(Y) is continuous and is dense irH, the operatog(Y) is negative
semidefinite.

In this case the archimedean hypothesidvyand invariance under positive
scalars implies that+rT(1— xJij)r € 14+ Ms C Cp + Mg for each positive real
numbert andr € F andj. It follows thatL(r" (1—x{ x;)r) > 0 so thaty; are well
defined and bounded.

Proof of (iii): Assume as before that
L(h*gh) <0, L(1+Ms+symFP)>0, L(1)>0, heF.

After constructing the inner produg¢t ) from L and the multipliersr; = My, we
observe(r;(Y)pj(Y)1,1) = L(rjpj + pjr;). UseL(1+rjp; + pjrj) > 0 for all r;;
by lettingrj — oo to obtainL(rjp;j + pjrj) > 0. This holds for all polynomials;,
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to include=rj, soL(rjp;j + pjrj) = 0. In particular(p; (Y)*p;(Y)1,1) = 0 implies
pi(Y)1=0.

Computations as before shoiw"sr(Y)[1],[1]) > 0 so that(Y,[1]) € V(P)N
K.
SSinceq(Y) is continuous and & L(h"gh) = (q(Y)[h],[h]) the operatoq(Y)
is negative semidefinite. a

Proofs and statements similar to (2) and (3) above appear in [7] and more
generally in [3]. We mention that in [7] the evaluation matriegsare all sym-
metric, while here we remain consistent with the rest of this note and leave them
unconstrained.
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