
SOLVING MATRIX INEQUALITIES

WHOSE UNKNOWNS ARE MATRICES
JUAN F. CAMINO∗, J. WILLIAM HELTON† , AND ROBERT E. SKELTON‡

Abstract. This paper provides algorithms for numerical solution of convex matrix inequalities
in which the variables naturally appear as matrices. This includes, for instance, many systems and
control problems. To use these algorithms, no knowledge of linear matrix inequalities (LMIs) is re-
quired. However, as tools, they preserve many advantages of the linear matrix inequality framework.
Our method has two components: 1) a numerical algorithm that solves a large class of matrix opti-
mization problems; 2) a symbolic “Convexity Checker” that automatically provides a region which,
if convex, guarantees that the solution from (1) is a global optimum on that region. The algorithms
are partly numerical and partly symbolic and since they aim at exploiting the matrix structure of
the unknowns, the symbolic part requires the development of new computer techniques for treating
noncommutative algebra.

Key words. matrix inequalities, convex optimization, semidefinite programming, noncommu-
tative algebra, computer algebra.

AMS subject classifications. 90C25, 90C22, 15A42, 15A45, 93A99.

1. The Basic Idea. Since the early 90’s, matrix inequalities (MIs) have become
very important in engineering, particularly, in control theory. If one has the ability to
convert the MIs arising in a particular problem to an LMI, then the problem can be
solved up to substantial size. The wide acceptance of LMIs stems from the following
advantages:

1. if a control problem is posed as an LMI, then any local solution is a global
optimum;

2. efficient numerical LMI solvers are readily available;
3. once a control problem is posed as an LMI, adding constraints in the form of

LMIs results in a LMI problem.
On the other hand, the LMI framework has the following disadvantages:

1. there is no systematic way to produce LMIs for general classes of problems;
2. there is no way of knowing whether or not it is possible to reduce a system

problem to an LMI without actually doing it;
3. the user must possess the knowledge of manipulating LMIs, which takes con-

siderable training. Indeed, if one does not have the ability to deal with LMIs,
then it is not clear what one should do;

4. transformations via Schur complements can lead to a large LMI representa-
tion.

1.1. Our Method. The main objective of this paper is to provide a method for
solving MIs that possesses similar advantages to the LMI framework, but without its

∗Department of Computational Mechanics, School of Mechanical Engineering, State University
of Campinas, 13083-970, Campinas, SP, Brazil (camino@fem.unicamp.br). Partly supported by
CAPES/Brazil and by NSF grants DMS–0100576/0400794.

†Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112 (hel-
ton@math.ucsd.edu). Partly supported by NSF grants DMS–0100576/0400794, and the Ford Motor
Co.

‡Department of Mechanical and Aerospace Engineering, University of California, San Diego, La
Jolla CA 92093-0411 (bobskelton@ucsd.edu). Partly supported by DARPA.

1

2 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

main disadvantages. Our method has two components:
1. a numerical algorithm, called NCSDP, that solves a large class of matrix

optimization problems;
2. a symbolic “Convexity Checker” that automatically provides a region G.

If G is convex then the solution from (1) is a global optimum on G. Also,
convexity insures good numerical behavior of NCSDP on G.

1.2. The Convexity Region Algorithm. The symbolic convexity region al-
gorithm receives as input a function F (x) and gives as output a family of inequalities
that determine a region G of x on which F (x) is “matrix convex.” Often, we just refer
to matrix convexity as convexity and it is defined precisely in §4.5. This algorithm
produces sufficient conditions, which with some very weak hypotheses, are necessary
conditions for convexity. A concern is that the output might produce a “region of
convexity G” with several connected components, in which case, the user must select
one of them (see §3.1 for an example).

1.3. The Numerical Solver for Matrix Inequalities. Our NCSDP solver
can be used to solve optimization problems involving matrix inequalities. It is designed
for situations where there are only a few unknown matrices and it attempts with
symbolic manipulation (as well as numerics) to use the matrix structure to advantage.
The solver has very reliable behavior in convex situations. The novel features of our
algorithm that allow us to view the matrices as unknowns, rather than the entries of
these matrices as unknowns, are discussed in §4.4, §7.2, and §8.

1.4. Combining the Tools. Putting together the convexity checker and the
NCSDP solver, we have a set of tools to solve many engineering problems that can
be posed as matrix inequalities with matrix unknowns. Section 3 gives an example of
these tools. Our method is effective on problems with few unknowns, but we reiterate
that we can take each unknown to be a matrix. This is not a serious restriction for
many system problems (e.g., most of the classics, [23]).

1.5. LMI Analogs. In some sense, there is a parallel between the conventional
“LMI approach” and our approach. In the former, one needs to be able to convert
the optimization problem over matrix functions into an equivalent LMI problem, so
that some available LMI solver can be used. In our approach, the convexity checker
provides a region G which, if convex, guarantees reliable behavior of our NCSDP
solver and that a solution is a global optimum on G.

1.6. Matrix Unknowns. The advantage of dealing with matrices as single let-
ters is that one letter z can stand for a matrix Z with n2 commuting variables. In
typical engineering situations, most problems have few matrix unknowns, often 2 or
3, and few (not exceedingly complicated) constraints (usually fewer than 10). This
contrasts with treating matrices in terms of their entries where one often has several
thousand variables. A disadvantage is that matrix multiplication is not commuta-
tive and so we must develop computer tools for performing algebraic operations on
noncommuting variables. The major focus of this research is how to use the matrix
structure of the unknowns to advantage, and this will come out as the article un-
folds. Our algorithms, including the NCSDP solver, combine symbolic and numerical
manipulations, and lead to several very natural open questions.

1.7. Software Availability. The user interface of our NCSDP code is not pol-
ished and we do not yet distribute NCSDP. However, the Convexity Checker al-
gorithm is well documented and available through NCAlgebra, a noncommutative

SOLVING MATRIX INEQUALITIES 3

algebra package that runs under Mathematica. This package provides a large number
of useful commands and functions for symbolic computation. It can be downloaded
from http://math.ucsd.edu/∼ncalg.

1.8. Acknowledgments. Thanks are certainly due to M. C. de Oliveira for
many ideas and suggestions. We also thank the referees for their very valuable com-
ments and suggestions.

2. Nomenclature. We use uppercase letters (e.g. X) for matrices and lowercase
letters (e.g. x) for symbolic variables. The notation Q,H stands for the symbolic
gradient and Hessian maps, meanwhile the notation Q, H is used to indicate we have
substituted matrices of compatible size for the symbolic variables in Q,H. The n-
dimensional Euclidean space is denoted by Rn. The space of n × m real matrices
is denoted by Rn×m. The space of n × n symmetric matrices with real entries is
denoted by Sn. Let (Sn)g stand for the direct product Sn × Sn × · · · × Sn of order g.
The expression A ≥ B (A > B) means that A−B is a positive semidefinite (positive
definite) matrix. The associated spaces are respectively denoted by S+ and S++. The
usual Kronecker product of two matrices A and B is denoted by A⊗B and the trace
of A is Tr {A}. To define the vec operation, let us associate the vector vec(X) ∈ Rnm

with each matrix X ∈ Rn×m by listing the entries of the columns, column by column,
that is, vec(X) = [X11, X21, . . . , Xn1, X12, . . . , Xn2, . . . , X1m, . . . , Xnm]T .

3. Introducing Our Approach by an Example. Suppose one is given two
matrices1 A and S where S is symmetric, and one needs to solve the following problem:

max {Tr {X} : (X, Y,A, S) ∈ closure(S)} , (P1)

where the domain S is given by

S =
{

(X, Y,A, S) ∈ V : F (X, Y,A, S) < 0, X2 < I, Y > 0, Y 2 < I
}

with V = Sn × Sn × Rn×n × Sn and

F (X, Y,A, S) := −AX(XAT Y −1AX − Y)−1XAT

− (Y −1(XAT Y −1AXY −1 − Y)Y −1)−1 −AX(Y −1(XAT Y −1AX − Y))−1

− ((XAT Y −1AX − Y)Y −1)−1XAT + XAT Y −1AX − S.

To solve this problem, we apply our two step methodology:
1. determine a domain G on which the above problem is convex;
2. solve numerically the optimization problem on G using NCSDP.

3.1. Step 1. Determining a Region of Convexity in Problem (P1). This
step is purely symbolic and we do not use the particular numerical values of A and
S given in (3.1). We describe this step using standard TEX notation rather than
displaying actual computer runs.

1Ultimately, in our example we shall take the matrices A and S to be

A =

»
1 −1
0 2

–
, S =

»
2 0
0 1

–
. (3.1)

The matrices are chosen small to save space.

4 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

The problem (P1) is to maximize Tr {X} over the domain

S := S1 ∩ S2

with

S1 :=
{
(X, Y,A, S) ∈ V : Y 2 < I, X2 < I

}
and

S2 :=
{
(X, Y,A, S) ∈ V : F (X, Y,A, S) < 0, Y > 0

}
.

This optimization problem will be convex whenever S is a convex domain, since
the objective function Tr {X} is linear in X. It is clear that S1 is convex, we wish to
show that S2 is convex so that we can conclude that S is convex. For this purpose,
we use our symbolic package to find the region where F (X, Y,A, S) is convex with
respect to X, Y in the domain S2.

Since matrix multiplication is not commutative, we must treat the matrices X, Y ,
A, and S symbolically as noncommutative variables. Thus, we load the Mathematica
package NCAlgebra which contains our convexity checker software. We type in the
function F just as we see it in the definition of F and apply the convexity checker
algorithm NCConvexityRegion[] (see §5) using its default set of permutations.
One of the outputs is the list

{2y−1, −2(xaT y−1ax− y)−1, 2y−1, 0, 0, 0, 0, 0, 0, 0, 0, 0}.

The interpretation of the output is that F (X, Y,A, S) will be a convex function on
the region consisting of all matrices that make each nonzero entry in the output list
a positive definite expression; which, in this case, is the region given by

2Y −1 > 0 and − 2(XAT Y −1AX − Y)−1 > 0.

Thus, we conclude from this output that F (X, Y,A, S) is simultaneously convex in X
and Y whenever A, S, X, and Y are matrices of compatible dimension in the region
GS2 given by

GS2 := {(X, Y,A, S) ∈ V : Y > 0, XAT Y −1AX < Y }. (3.2)

To find if the above region GS2 is itself simultaneously convex in X and Y , we run
the convexity checker once more on the function G(X, Y,A) := XAT Y −1AX − Y ,

NCConvexityRegion[xaT y−1ax− y, {x, y}].

This command outputs the list {2y−1, 0}. Thus, the region G is convex on matrices
Y satisfying Y > 0. Thus, the region where the function G is convex consists of
matrices Y satisfying Y > 0; consequently the region GS2 in (3.2) is convex. Thus, we
can conclude that the optimization problem (P1) is convex inside the convex region

G := {(X, Y,A, S) ∈ V : (X, Y,A, S) ∈ S ∩ GS2}.

Equivalently

G := {(X, Y,A, S) ∈ V : F (X, Y,A, S) < 0, XAT Y −1AX < Y,

Y > 0, Y 2 < I, X2 < I}.

SOLVING MATRIX INEQUALITIES 5

Note that, the region of convexity G for the optimization problem (P1) was deter-
mined without considering any specific numerical values for A and S. Thus, the set
of inequalities G characterizes a convex region for any arbitrary choice of two n × n
matrices A and symmetric S no matter what value n is. Whether or not G is the
biggest such region we have not said. In fact the algorithm addresses this, requiring
an interpretation for which we refer the reader to [5], or see §5 for an abbreviated
account. For the example above this gives that the largest sub-region of matrix tuples
(of large enough size) on which the Hessian is positive is the closure of G.

3.2. Step 2. Invoking the NCSDP Solver. Until this point, all calculations
were symbolic. Now, we make the particular numerical choice for the matrices A, S
given in (3.1). The optimization problem (P1) can now be solved with the NCSDP
solver reliably and globally on the convex region of 2× 2 matrices satisfying the con-
straints G. We emphasize that this amounts to adding the following convex constraint

XAT Y −1AX < Y (3.3)

to the constraints defining S. Thus, we are not solving exactly the original problem,
and the user must decide if this constraint meets his “engineering needs.” Beware,
that declining to add the constraint (3.3) subjects one to the difficulties found in
nonconvex situations, but one can still run numerical optimization routines.

To use NCSDP, we define the objective for this optimization problem as

obj := −Tr {X} ,

subject to the constraint Gi < 0, where

G1 := F (X, Y,A, S), G2 := XAT Y −1AX − Y,

G3 := −Y, G4 := Y Y − I, G5 := XX − I,

with

A =
[
1 −1
0 2

]
, S =

[
2 0
0 1

]
.

Using this input, namely (obj, {G1, G2, G3, G4, G5}, {X, Y }), we run NCSDP.
The solver finds the global optimizers over G to be

X∗ =
[
0.3421 0.0263
0.0263 0.0788

]
, Y ∗ =

[
0.8107 0.0016
0.0016 0.4255

]
.

The optimal cost is therefore Tr {−X∗} = −0.4208. We repeat that X∗, Y ∗ is a global
optimum over the region

S ∩ {(X, Y,A, S) ∈ S2×2 : XAT Y −1AX < Y, Y > 0}.

with the matrices A and S as given above.
We emphasize there is no need to know much Mathematica to use NCSDP, unless

one desires to use the convexity checker, and related symbolic algorithms, as we did
in this example.

6 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

3.3. Scope of our Methods. The method we shall describe here applies to
problems of the form

min
Xi

{Tr {X1} : Xi ∈ closure(G)} ,

where the feasibility region G is given by

G =
{

(Xi, Aj) : F1(Xi, Aj) > 0, . . . , F`(Xi, Aj) > 0
}

with F1(Xi, Aj), . . . , F`(Xi, Aj) rational expressions of noncommutative variables Aj ,
Xi, XT

i . We assume the closure of the set G is compact. We can take some of
the variables to be formally symmetric, like X7 = XT

7 . The methods also apply to
the feasibility problem, namely, determining if G is empty. We expect that (once
refined) such methods will have advantages when the Fk are not highly complicated
expressions.

An example of a problem we do not treat here is

minTr {X} , subject to Tr
{
X2

}
≤ 1.

However, we think our methods extend to such situations.
Space and expository considerations forced us to consider a single function F (X)

of a single symmetric variable X = XT . The extension to the multivariate case stated
above, found in [4], follows similar ideas, but it is too long to present here.

3.4. Comparing to the LMI Approach. The optimization problem (P1) was
actually selected to correspond to an LMI problem, so that we could compare ap-
proaches. There is not enough space to describe this in detail (the corresponding LMI
system has dimension 4 × 4). We found that our approach produced exactly what
was obtained using the LMI. Indeed our “extra condition” XAT Y −1AX < Y was a
necessary condition for the LMI to be positive definite. Thus, from the LMI point of
view, it is an essential constraint.

Since transformations via Schur complements can lead to an LMI representation
with large constraint block matrices, the NCSDP solver has the potential to reduce
the optimization time significantly compared to primal-dual solvers (see §9).

3.5. Comparing to Optimization over Functions of Commutative Vari-
ables. If one has a complicated polynomial or rational function F , then there are
typically many isolated regions on which the Hessian of F is positive definite. In
our terminology, there are many “regions of convexity” for F . Thus, our technique
requires selecting those convexity regions of interest and finding optima on them.

To those whose experience is with classical rational optimization, this seems odd,
because there are many regions of convexity for F . However, our motivation comes
from systems engineering problems, where we reemphasize that the number of ma-
trix unknowns is small and that the rational functions are not terribly complicated,
consequently F has a few connected regions of convexity. Moreover, the inequality
constraints in a problem (e.g. Y > 0, X2 < I) often select one convexity region.

4. Background on NC Rational Functions and Convexity.

4.1. NC Polynomials. We work with noncommutative (hereafter denoted NC)
polynomials with real numbers as coefficients in variables x = {x1, . . . xg}. They cause
little confusion, so a few examples suffice for an introduction:

p(x) = x1x2x1 + x1x2 + x2x1, xT
1 = x1, xT

2 = x2,

SOLVING MATRIX INEQUALITIES 7

where the variables xj are formally symmetric. In this next expression

p(x) = xT
1 x2x1 + xT

1 x2 + x2x1, xT
2 = x2.

the variable x2 is formally symmetric, but x1 is not. Often, the term indeterminant
is used instead of the term variable.

A NC polynomial p is symmetric provided that it is formally symmetric with
respect to the involution T . Often, we shall substitute n × n matrices X1, . . . , Xg

into p for the variables x1, . . . , xg. For a symmetric p, if the xj are designated as
symmetric variables, then the matrices Xj must be taken to be symmetric, and the
resulting matrix p(X1, . . . , Xg) is symmetric. The variables xj which are not declared
symmetric, if substituted by the matrix Xj , also result in the variables xT

j being
substituted by XT

j .

4.2. NC Rational Functions. We shall discuss the notion of a NC rational
function in terms of rational expressions. There is a technicality, “analytic at 0”,
which we include, since it makes formal definitions simpler. Casual readers can ignore
it, since assuming analyticity elsewhere suffices.

A NC rational expression analytic at 0 is defined recursively. NC polynomials
are NC rational expressions as are all sums and products of NC rational expressions.
If r is a NC rational expression and r(0) 6= 0, then the inverse of r is a rational
expression.

The notion of the formal domain of a rational expression r, denoted Fr,formal,
very roughly speaking, is

Fr,formal := {X : r(X) is defined (is not infinite)} .

More precisely the formal domain and the evaluation r(X) of the rational expression
at a tuple X ∈ (Sn)g

⋂
Fr,formal are both defined recursively2.

The following example illustrates it conveniently.
Example 4.1. Let the symmetric NC rational expressions r(x) be given by

r(x1, x2) = (1 + x1 − (3 + x2)
−1)−1,

with x1 = xT
1 and x2 = xT

2 . The domain Fr,formal is⋃
n>0

{
X1, X2 ∈ Sn : I + X1 − (3I + X2)

−1 and 3I + X2 are invertible
}

.

A difficulty is two different expressions, such as

r1 = x1(1− x2x1)−1 and r2 = (1− x1x2)−1x1

that can be converted into each other with algebraic manipulation. Thus they repre-
sent the same function and one needs to specify an equivalence relation on rational
expressions to arrive at what are typically called NC rational functions. (This is
standard and simple for commutative (ordinary) rational functions.) There are many

2The formal domain of a polynomial p is all of (Sn)g and p(X) is defined just as before. The
formal domain of sums and products of rational expressions is the intersection of their respective
formal domains. If r is an invertible rational expression analytic at 0 and r(X) is invertible, then X
is in the the formal domain of r−1.

8 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

alternate ways to describe NC rational functions and they go back 50 years or so in
the algebra literature, cf. [17]. For engineering purposes, one need not be too con-
cerned, since what happens is that two expressions r1 and r2 are equivalent whenever
the usual manipulations you are accustomed to with matrix expressions convert r1 to
r2. We say more on this in §4.3.

For r a rational function, that is, an “equivalence class of rational expressions r”,
we define its domain by

Fr :=
⋃

{r represents r}

Fr,formal.

Henceforth we do not distinguish between rational functions r and rational expressions
r, since this causes no confusion.

4.3. Partial Fraction Expansion of an NC Rational. A computer algebra
package must have a way to put functions into a “canonical form”. For example, if two
rational expressions r1 and r2 represent the same rational function, then the canonical
form of r1−r2 would be 0. In NCAlgebra we have the command NCSimplifyRational
which in principle, when applied to a rational expression r, outputs what one might
think of as a noncommutative partial fraction expansion of r; in practice, our com-
mand gives the true canonical form on a broad class of NC rational expressions but
not all, since doing all of them is an infinite process. The theory behind producing
this kind of canonical form is found in [11] and [24]. The idea is to generate what
is called a “Gröbner Basis” (GB) from the defining equations for inverses and store
“key” elements of the GB as replacement rules in NCSimplifyRational. This is well
suited to systems whose input operators B are left invertible, and output operators
C are right invertible and state operators are generically invertible. Indeed they nat-
urally lie in what is called a “path algebra”. It is not hard (for a GB expert) to prove
that GB production respects the path algebra structure, thus, for example, the right
inverse of B will never occur. See [10] for an extensive treatment of GBs in a path
algebra.

4.4. Symbolic Differentiation of Noncommutative Functions. Since our
goal is to use symbolic computation to determine the gradient and the Hessian of
functions in our optimization problems and to preserve the matrix structure of the
unknowns, we need the notion of derivatives of function of variables which are symbolic
noncommutative elements.

Noncommutative rational functions of x are polynomials in x and in inverses of
polynomials in x. An example of a symmetric noncommutative function is

F (a, b, x) = ax + xaT − 3
4
xbbT x, x = xT . (4.1)

It is also assumed there is an involution on these rational functions which is denoted by
the superscript T , and which will play the role of transpose later when we substitute
matrices for the indeterminates.

The first directional derivative of a noncommutative rational function F (x) with
respect to x in the direction δx is defined in the usual way

DF (x)[δx] := lim
t→0

1
t

(F (x + tδx)− F (x)) =
d

dt
F (x + tδx)

∣∣∣∣
t=0

.

SOLVING MATRIX INEQUALITIES 9

For example with F in (4.1),

DF (x)[δx] = aδx + δxaT − 3
4
δxbbT x− 3

4
xbbT δx.

and if p(x) = x4,

Dp(x)[δx] = δxxxx + xδxxx + xxδxx + xxxδx

It is easy to check that derivatives of symmetric noncommutative rational func-
tions always have the form

DF (x)[δx] = sym

{
k∑

i=1

aiδxbi

}
. (4.2)

The sym operator is defined as sym {M} = M + MT .
The second directional derivative of a noncommutative rational function F (x)

with respect to x in the direction δx is defined by

D2F (x) [δx, δx] =
d2

dt2
F (x + tδx)

∣∣∣
t=0

.

For example, if p(x) = x4 then

D2p(x) [δx, δx] = 2(δxδxxx + δxxδxx + δxxxδx + xδxδxx + xδxxδx + xxδxδx)

One can easily show that the second directional derivative of a symmetric non-
commutative rational functions has the form

D2F (x) [δx, δx] = sym

{
w1∑
j=1

mjδxnjδxtj

+
w2∑

j=1+w1

mjδx
T njδxtj +

w3∑
j=1+w2

mjδxnjδx
T tj

}
. (4.3)

For r(x) given by r(x1, x2) = (1 + x1 − (3 + x2)
−1)−1, we have

Dr(x)[δx1] = −(1 + x1 − (3 + x2)
−1)−1δx1(1 + x1 − (3 + x2)

−1)−1

and

D2r(x) [δx1 , δx1] = 2(1 + x1 − (3 + x2)
−1)−1 · · ·

δx1(1 + x1 − (3 + x2)
−1)−1δx1(1 + x1 − (3 + x2)

−1)−1.

4.4.1. Symbolic NC Differentiator Algorithm. Derivatives of rational ex-
pressions can be defined recursively from the following rules:

1. If r(x) is a polynomial, use the standard formula.
2. The product rule: if r(x) = r1(x)r2(x), then Dr(x)[δx] = Dr1(x)[δx]r2(x) +

r1(x)Dr2(x)[δx].
3. The sum rule: if r(x) = r1(x) + r2(x), then Dr(x)[δx] = Dr1(x)[δx] +

Dr2(x)[δx].

10 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

4. If r(x) is the inverse r(x) = f−1(x) of a NC rational expression satisfying
f(0) 6= 0, then Dr(x)[δx] := −f−1(x)Df(x)[δx]f−1(x).

Our differentiation algorithm applies these rules (in a natural order) to a NC
rational expression r(x) and gives a new NC rational expression Dr(x)[δx], the di-
rectional derivative of the rational expression r(x) in direction δx. Similarly,
there are the natural formulas for the second directional derivative D2r(x) [δx, δx],
for sums products and inverses. Our algorithm uses these recursively to compute our
symbolic Hessian of r(x).

4.5. Matrix Convex Functions. It will be shown that the definition just pre-
sented for the Hessian of a symmetric noncommutative rational function F is the key
to determine the region of convexity for F . Therefore, it is the main ingredient of
our NCConvexityRegion algorithm. There are several (almost equivalent) notions of
noncommutative convexity, thus we define matrix convex functions as it is the
definition used throughout the paper. For formal definitions, a detailed presentation,
and an substantial theory behind the algorithm, see [5].

Let us suppose that F is the symmetric noncommutative rational function to be
analyzed. Say F is a function of the noncommutative variables x1, . . . , xk. Then, the
function F is said to be matrix convex with respect to the variables x1, . . . , xk on
a certain domain G provided its Hessian, denoted by D2F (X1, . . . , Xk)[δX

2
1, . . . , δX

2
k],

is a positive semidefinite matrix for all X1, . . . , Xk in3 G and all δX1, . . . , δXk.
It is known (cf. [5]) that if G is a convex set, then this definition is equivalent to

the usual notion of convexity, the geometrically matrix convex functions, which
states that

F (αX + (1− α)Y) ≤ αF (X) + (1− α)F (Y)

with X := {X1, . . . , Xk} and Y := {Y1, . . . , Yk} tuples of matrices of compatible
dimensions, and 0 ≤ α ≤ 1 a scalar. Of course, G might have separate components,
then one often can focus on the component of primary interest with convexity on that
component alone.

5. How the Convexity Checker Algorithm Works. With these notions of
convexity, we now briefly introduce the algorithm underlying the command

NCConvexityRegion[F , {x}]

that provides a region G on which F (X) is matrix convex. The main steps of the
algorithm are:

1. The second directional derivative with respect to x1, . . . , xk, called the Hes-
sian D2F [δx, δx] of the function F , is computed.

2. As the Hessian is always a quadratic function of the δx directions, it can be
associated with a symmetric matrix MD2F [δx,δx] with entries which are NC
rational functions of x but not δx.

3. The noncommutative LDLT factorization is applied to the coefficient matrix
MD2F [δx,δx].

4. And finally specifying positive definiteness of the resulting diagonal matrix
D(x1, . . . , xk) gives inequalities describing a region G of variables on which
F is matrix convex.

3More precisely, for all X in the set G that intersect the domain of the rational function F .

SOLVING MATRIX INEQUALITIES 11

5. If a linear independence condition which is usually true holds and if the region
G is non empty for matrices of large enough size, then the closure of G is the
largest domain on which D2F [δx, δx] is positive semidefinite. (See [5] For
details on this rather complicated fact.).

Our implementation assumes that each pivot in the LDLT decomposition is in-
vertible. Possibly the most informative thing that could be done briefly is to give a
simple example; presented in [5].

Example 5.1. Define the function F (x) by

F (x) = gT xT axg + xT bx + gT xT cx + xT cT xg,

where b = bT and a = aT .
1. The Hessian of F (x) is given by

D2F (X) [δx, δx] = 2(δx
T bδx + δx

T cT δxG + gT δx
T aδxg + gT δx

T cδx).

2. Equivalently, this quadratic expression takes the form

D2F (X) [δx, δx] = V [δx]T MD2F V [δx] = 2(δx
T , gT δx

T)
(

b cT

c a

) (
δx

δxg

)
.

3. The LDLT decomposition with no permutation applied to MD2F is(
1 0

cb−1 1

) (
b 0
0 a− cb−1cT

) (
1 b−1cT

0 1

)
,

provided that b is invertible4.
4 Therefore, when b is invertible, sufficient conditions for the Hessian to be

positive semidefinite are

b > 0 and a− cb−1cT > 0.

5 If the Hessian is “positive”, then for large enough dimension, a, b, c are in the
closure of the set described in Step 4.

A finer property of our algorithm (and implementation) is that it includes the
possibility of permutations. Thus, if we know that a (instead of b) in the example
above is invertible, then a permutation can be applied before applying the LDLT

decomposition. This makes NCConvexityRegion[] somewhat delicate. In practice,
the runs will finish with some choices of permutation and not with others. Also the
expressions that appear in the outputs from successful runs using different permuta-
tions can be different, however, the theory behind NCConvexityRegion tells us that
the sets they describe are all the same.

Example 5.2. Let p(x) be given by p(x) = aT x2b + bT x2a, with x = xT . Its
Hessian is aT δx

2b + bT δx
2a. Represent this as vT Mv with

vT :=
(

aT δx bT δx

)
and M =

(
0 1
1 0

)
whose eigenvalues are 1 and −1. Thus, we conclude from Step 4 and 5 that (for large
enough n) there is no set G of matrices a and b, open in the set of pairs of n × n
matrices, on which the Hessian is positive definite.

4The list returned by NCConvexityRegion is {b, a− cb−1cT }.

12 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

A related example is p(x) = aT x2a + aT x2a. Its Hessian is aT δx
2a + aT δx

2a;
the representation above still works with vT := (aT δx, aT δx). However, the linear
independence condition of Step 4 on vT := (aT δx, aT δx) does not hold, that is, the
condition aT δx and aT δx are linearly independent fails, thus no definitive conclusion
is possible. Another (more natural) representation is aT δx

2a + aT δx
2a = 2aT δx1δxa,

that is, M is the 1×1 matrix 1.Thus Step 4 implies, the Hessian of p(x) is everywhere
positive; note that in this case, linear independence holds. NCConvexityRegion does
the later not the former calculation.

Our Convexity Region algorithm was new with [5], where it is described in detail
together with the proofs of its properties. The guarantee it produces for the nonnega-
tivity of the NC Hessian (as in Step 4) is straightforward to prove, while the converse
(as in Step 5) is quite surprising and not at all easy to prove.

5.1. Noncommutativity Is Essential. A great advantage of our framework
is that treating matrices as single letters is likely the only practical necessary and
sufficient approach available for checking convexity of rational functions on matrices
of large dimension. For a commutative rational function F , one might imagine a
Parrilo type of sum of squares algorithm [22], which could affirm positivity of the
Hessian of F ; and thus, convexity of F . Unfortunately, it would be practical with
only a few dozen variables. If the unknown X and Y were symmetric matrices on
even a 10 dimensional state-space, the entrywise representation would give about a
100 commuting variables. This is prohibitive. On the other hand, our convexity
checking method is insensitive to the dimension of the state-space.

6. Convex Optimization over Matrix Functions. In this paper, the pre-
sentation of the numerical NCSDP optimization solver for matrix functions is limited
to the single variable case. The extension to the multivariate case, found in [4], fol-
lows similar ideas, but it is too long to present here. This solver is based on an
implementation of the method of centers.

There are a few papers on solving matrix inequalities which are not linear in the
unknowns. In [15], the authors presented and analyzed a numerical interior point
trust region algorithm that can be used for solving a class of nonlinear (nonconvex)
semidefinite programming problem. For MIs problems that concerns the minimiza-
tion of the largest eigenvalue of a matrix (this is a convex, but a highly nonsmooth
problem), the work by [21, 16] is a good source. See [1, 26, 6, 27, 28, 29] for general
SDP problems, and [3] for a comprehensive introduction to convex optimization.

The main distinctions between these approaches and ours is that our method
focus on unknowns which themselves are treated as matrices. In our research, we
deal with the entire matrix structure instead of dealing with the individual entries
of the matrix unknowns. Also, the user does not need to calculate first and second
derivatives by hand, since this i done automatically in our method.

The outline of our method is as follows. We compute the first and second deriva-
tives of a potential function noncommutatively (symbolically) in a way that keeps the
matrix structure and does not split the matrices up (see §4.4). This step provides the
Hessian map H(δx) and the gradient map Q. It is this step whose efficiency is improved
by our MinimumSylvesterIndex algorithm for symbolically obtaining an efficient form
for H(δx) (this is described in §8). After this, our algorithm turns numerical (by
substituting matrices for the indeterminate that appears in the expressions for H(δx)
and Q) and the code aims to solve the respective numerical linear system of equations
H(δX) = Q in the direction δX . We find that the numerical linear subproblem has an
elegant form, and it is an interesting open question how to fully exploit this form. We

SOLVING MATRIX INEQUALITIES 13

numerically solve this linear system for δX in a conventional way. The method suc-
cessively iterates, at the numerical level, until the algorithm converges to an optimal
solution.

As described above, one needs to compute derivatives of an auxiliary potential
function. The formula for this potential function depends on which member of the
family of penalty/barrier methods one wishes to adhere to. The approach we have
selected is known as the analytic method of centers. Before describing this method in
§6.2, we characterize the optimization problem we are interested in §6.1.

6.1. Constrained Optimization Problem. Throughout the paper, we shall
be primarily concerned with the following convex optimization problem

fopt = min {Tr {X} : X ∈ closure(G)} , (COP)

with the feasibility domain G given by

G =
{

X ∈ V : F (X) > 0
}

,

where we assume the closure of G is compact, the set V is a subspace of Rp×q, and
F : V → Sn is a concave function. This type of problem incorporates the eigenvalue
minimization problem as a particular case.

6.2. Review of the Method of Centers. The idea behind the method of
centers ([2, 19] and references therein) is to replace the above constrained problem by
a sequence of unconstrained minimization problems whose solutions eventually tend to
the set of optimal solutions of (COP). This occurs in the context of interior penalty
methods. It follows therefore, that under certain hypotheses, the original problem
(COP) can be approximated by a sequence of unconstrained convex optimization
problems of the form

X∗(γ) = argmin {φγ(X) : X ∈ Gγ} , (UOP)

with the auxiliary potential function φγ : Gγ → R given by

φγ(X) = ζ log (1/(γ − Tr {X}))− log det F (X)

where ζ is a scalar satisfying ζ ≥ 1, and Gγ is the domain given by

Gγ =
{

X ∈ G : Tr {X} < γ
}

.

The decrease of the parameter γ has to be done in such a way that the method
maintains feasibility at each iteration and that the sequence {γk} is guaranteed to
converge to fopt (the minimum values of the objective function). The formula for
updating γ at some iteration k is given by

γk+1 = (1− θ) Tr
{
Xk

}
+ θγk, 0 < θ < 1. (6.1)

where Xk denotes X∗(γk). Under mild conditions, the solution X∗(γ) of (UOP)
approaches the set of optimal solutions of (COP) for an appropriate sequence of
decreasing centralization parameter γ (see [2, 7, 19]).

Using these facts, one possible algorithm based on the method of centers can be
described by

14 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

Algorithm 6.1. Method of Centers.
Fix θ such that 0 < θ < 1;
Choose X0 and γ0 such that X0 ∈ Gγ0 ;
k ← 0;
while not converged do

γk+1 ← (1− θ) Tr
{
Xk

}
+ θγk;

Xk+1 ← argmin
{
φγk+1(Xk) : Xk ∈ Gγk+1

}
;

k ← k + 1;
end while

There are some important comments concerning this algorithm:
1. The bound γk+1 from (6.1), used in the determination of the analytic center of

the potential φγk+1(Xk), never produces infeasible starting points Xk, γk+1.
2. It will be necessary to find feasible starting points X0 and γ0 to be used in

Algorithm 6.1. This is a feasibility problem that can be solved by the same
method of centers.

3. Evidently, the expensive part of the algorithm is the inner loop, the part that
computes the analytic center.

6.3. An Algorithm to Solve the Inner Loop. This section sketches briefly
a standard algorithm to solve the inner loop. The algorithm implemented in the
NCSDP code to find the analytic center

Xk+1 = argmin
{
φγ(Xk) : Xk ∈ Gγ

}
for fixed scalar γ is based on a conventional modified Newton’s method ([19, 3, 20]),
as follows:

while not converged do
Xk+1 ← Xk + σδX

k;
end while

where δX
k is the Newton direction (see §7.1). The step length used in this algorithm

([19]) is given by

σ =
{

1/(1 + τ) if τ > 1/4
1 otherwise

for τ =
√

gT H−1g, with g and H respectively the gradient and the Hessian of φγ(Xk).
The stopping criteria used in our experiments was: stop as soon as σ = 1. In practice
Newton’s method works better with a line search instead of the above fixed step
length. Certainly, we shall consider implementing a line search in a more elaborate
version of the code.

7. Solving for the Analytic Center. In §7.1, §7.2 and §7.3 we discuss in depth
the linear subproblem that provides the update direction δX , which is the core of the
Modified Newton’s algorithm presented above in §6.3. Therefore, it will be in these
sections where we show how to exploit the matrix structure of the unknowns to find
an elegant formula for the linear subproblem.

7.1. Describing the Main Steps. The original convex optimization problem
(COP) has now been replaced by a sequence of unconstrained convex minimization
problems of the form (UOP) for a decreasing sequence of scalars {γk} provided by
formula (6.1). To find the update directions which leads toward the central path for

SOLVING MATRIX INEQUALITIES 15

fixed values of γ, Newton’s method is applied by minimizing an approximation, the
second-order Taylor series expansion, of the potential function φγ(X). In a vague
sense, these procedures can be summarized as follows:

1. Compute symbolically the second-order Taylor expansion of the potential
function φγ(x + δx) in some direction δx

φγ(x) + Dφγ(x) [δx] +
1
2
D2φγ(x) [δx, δx] .

2. The Newton step δx
∗ must satisfy the necessary optimality conditions for the

following quadratic minimization problem

min
δx

Dφγ(x) [δx] +
1
2
D2φγ(x) [δx, δx] .

3. This first-order necessary optimality condition is algebraically5 given by

0 = D
[
Dφγ(x) [δx] +

1
2
D2φγ(x) [δx, δx]

] [
δv

]
, for all symmetric δv. (7.1)

Which will be shown (in Theorem 7.1) to be equivalently6 written as

Tr
{

δv(H(δx)− Q)T + (H(δx)− Q)δv
T
}

= 0, for all symmetric δv. (7.2)

4. Finally, find a Newton update δX
∗ satisfying Eq. (7.1) or Eq. (7.2) for all δv.

The next section §7.2 concerns Steps 1 trough 3, which are performed symbolically.
On the other hand, Step 4 presented in §7.3 is completely numerical.

7.2. Obtaining the Formulas for the Linear Subproblem. The main ingre-
dient of our approach is how we use symbolic computation to determine the algebraic
linear system of equations that provides the update direction δX toward the central
paths. At the outset of this work, it was not obvious that we could find a clean
symbolic formula for the linear subproblem which treated both known and unknown
matrices as a whole and did not break them into entries. Fortunately, this is possible
as the next theorem shows.

Theorem 7.1. Let V be a subspace of Rp×q, and the map F : V → S be concave.
Consider the following unconstrained auxiliary potential function φγ : Gγ → R given
by

φγ(X) = ζ log
(
1/(γ − Tr {X})

)
− log det F (X),

where ζ is a scalar satisfying ζ ≥ 1, and the feasibility domains G and Gγ are respec-
tively given by

G =
{

X ∈ V : F (X) > 0
}

and Gγ =
{

X ∈ G : Tr {X} < γ
}

,

where we assume the closure of G is compact. Then, the update direction δX
∗ toward

the central path for the above potential is the solution of the following symbolically7

computable algebraic linear equation:

Tr
{

δv(H(δx)− Q)T + (H(δx)− Q)δv
T
}

= 0, for all δv ∈ V, (7.3)

5Assuming that all x belong to some space V, then δx, δv ∈ V. Cf. Footnote 6, 7.
6When we say Tr {x}, we mean that the operation Tr {} is to be performed after x has been

replaced by a matrix. Cf. Footnote 7.
7When we say δv ∈ V, we mean that we will substitute matrices in V for the indeterminate δv .

The same is true for Tr {x}. Cf. Footnote 6.

16 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

where H(δx) is linear as regarded as a function of δx. Moreover, Q and H(δx) are
given by

Q =
k∑

i=1

aT
i F (x)−1bT

i −
1
2
ζ (γ − Tr {x})−1

Id,

and

H(δx) =
k∑

i=1

k∑
j=1

aT
i F (x)−1ajδxbjF (x)−1bT

i +
k∑

i=1

k∑
j=1

aT
i F (x)−1bT

j δT
x aT

j F (x)−1bT
i

− 1
2

w1∑
j=1

nT
j δT

x mT
j F (x)−1tTj + mT

j F (x)−1tTj δT
x nT

j

− 1
2

w2∑
j=1+w1

njδxtjF (x)−1mj + nT
j δxmT

j F (x)−1tTj

− 1
2

w3∑
j=1+w2

tjF (x)−1mjδxnj + mT
j F (x)−1tTj δxnT

j

+
1
2
ζ (γ − Tr {x})−2 Tr {δx} Id,

where the terms ai, bi, mi, ni, ti are obtained from the first and second directional
derivatives of F (x) as given by (4.2) and (4.3). The term Id stands for the symbolic
analog of the identity matrix.

Proof. The theorem follows from manipulations of (7.1). For a detailed presen-
tation see [4].

The result of Theorem 7.1, the algebraic linear equation (7.3), can be further
specialized depending upon the structure of the underlying subspace V; in other words,
if there is or there is not some restriction imposed on X. Specifying various structures
for the underlying subspace V, is the subject of Corollary 7.2 which is the main result
of this section.

Corollary 7.2. Let V be a subspace of Rp×q and C be a convex domain in V.
Let the map F : C → S be concave. Consider the following unconstrained auxiliary
potential function φγ : Gγ → R given by

φγ(X) = ζ log
(
1/(γ − Tr {X})

)
− log det F (X),

where ζ is a scalar satisfying ζ ≥ 1, and the feasibility domains G and Gγ are respec-
tively given by

G =
{

X ∈ C ⊂ V : F (X) > 0
}

and Gγ =
{

X ∈ G : Tr {X} < γ
}

.

Then, depending upon the structure of the underlying subspace V, the update direction
δx
∗ toward the central path for the above potential is the solution of one of the following

symbolically computable algebraic linear equation:
1. The subspace V equals Rp×q, so that the unknown X can be any matrix in

Rp×q:
c1∑

i=1

aiδxbi +
c2∑

j=c1+1

ajδ
T
x bj + % Tr {δx} = Q.

SOLVING MATRIX INEQUALITIES 17

2. The subspace V equals Sp, so that the unknown X is restricted to being sym-
metric:

c2∑
i=1

bT
i δxaT

i + aiδxbi + % Tr {δx} = Q + QT .

3. The unknown X is restricted to being a scalar multiple of the identity, that
is, X = σI, for some scalar σ:

Tr

{
c2∑

i=1

aibi + %Tr {Id}

}
δσ = Tr {Q} , δx = δσId, δσ ∈ R.

For these expressions, Q is the gradient term given by

Q =
k∑

i=1

aT
i F (x)−1bT

i −
1
2
ζ (γ − Tr {x})−1

Id,

The term % is the cost term given by % = 1
2ζ(γ−Tr {x})−2Id. And, by an appropriate

relabeling, the terms ai and bi are obtained from the Hessian map H(δx) presented in
Theorem 7.1.

Proof. The corollary follows from Theorem 7.1 by expressing the linear system of
equations (7.3) considering the structure of the underlying subspace V. (See [4].)

The above results provide the necessary conditions that the update δX must
satisfy in order to be a Newton direction toward the central path of the unconstrained
auxiliary potential function φγ(X).

We provide a tutorial example in appendix A to illustrate Theorem 7.1 and Corol-
lary 7.2, and to give an idea of how they are proved.

7.3. Solving the Linear Subproblem. The algebraic linear subproblem8 pro-
vided in Corollary 7.2 always has the form:

N∑
i

aiδxbi + % Tr {δx} = Q̄ (7.4)

where the a’s, b’s and Q̄ are rational functions of the known noncommutative vari-
ables given in the problem formulation, and δx is the unknown variable (the update
direction). The notation ai, bi stands for symbolic Sylvester terms, meanwhile the
notation Ai,Bi will be used to indicate we have substituted matrices of compatible
size for the symbolic variables in ai, bi.

The integer N has been called the Sylvester index in [14]. A key point is that
the same linear system can have several representations of the form (7.4), that is, the
representation of the Hessian map H(δx) in Theorem 7.1 is not unique. We will see
later in §8 that there is a substantial advantage to obtaining a representation with a
small Sylvester index.

There are two main costs in treating the linear subproblem (7.4):
FE: Evaluating the matrices a’s, b’s and Q̄ at each iteration. That is, converting

them from symbols to numeric matrices whose entries are numbers is time
consuming (see §8).

8a) Depending upon the structure of the underlying subspace V, the term Q̄ will be either Q̄ = Q
or Q̄ = Q+QT . b) The third case in Corollary 7.2 behaves in a similar way, so we do not go through
it.

18 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

NLS: Solving numerically the resulting linear system for δX .
After the evaluation step FE has been performed, we rewrite the linear subprob-

lem (7.4) as

N∑
i

AiδXBi + % Tr {δX} = Q (7.5)

indicating that the indeterminate have already been substituted by matrices of com-
patible dimension. Then, using the vec operation (see [12]) the above matrix system
(7.5) can be transformed into the equivalent vector form

Hv = g (7.6)

where H is the Hessian matrix given by

H =
N∑
i

BT
i ⊗Ai + vec(%) vec(I)T

where the vector g is given by g = vec(Q), and v is the vector of unknowns given by
v = vec(δX). The symbol ⊗ denotes the Kronecker product.

Therefore, the cost of numerically solving the linear subproblem can be actually
split into two distinct costs:

KP: Applying Kronecker products to build the Hessian matrix H.
LS: Numerically solving Hv = g for the unknown vector v.
The above “brute force” procedure does not take advantage of the particular

structure of H(δx). Of course, Lyapunov equations are very special cases for which
there are extremely fast algorithms (see [9, 14]). Naturally, an open question highly
motivated by this research is how does one use this special “Sylvester” structure to
solve efficiently (7.5).

Iterative methods are attractive for solving Sylvester type linear equations. Re-
lated to this is [13] and references therein. However, in our paper, we do not investigate
numerical linear solvers special to Sylvester forms. It is a separate topic and our focus
was on our new noncommutative symbolic methodology. Consequently, we just used
our brute force Kronecker product approach since it is reliable. However, in order to
speed up the implementation of our linear solver, we plan a careful study of iterative
methods like conjugate gradient in a separate project.

8. Improving the Evaluation Time for the Linear Subproblem. In this
section, we illustrate by examples that for a system of linear equations, the Sylvester
form (7.4) is not unique. Moreover, we show that the Sylvester index has a great
influence on the evaluation cost given in Step FE of §7.3.

Consider an expression in the Sylvester form

H(δx) = aδxaT + xT δxx + bδxbT − aδxx− xT δxaT + bδxaT + aδxbT . (8.1)

The Sylvester index in this case is seven. This expression can be written in at least
two different ways, having the same number of terms. One possibility is

H(δx) = (a− xT)δx(a− xT)T + (a + b)δx(a + b)T − aδxaT =
N=3∑
i=1

aiδxbi

SOLVING MATRIX INEQUALITIES 19

for ai and bi given by

a1 = (a− xT), a2 = (a + b), a3 = −a

b1 = (a− xT)T , b2 = (a + b)T , b3 = aT

Another one is

H(δx) = (a + b− xT)δx(a + b− xT)T + bδxx + xT δxbT =
N=3∑
i=1

aiδxbi

for ai and bi given by

a1 = (a + b− xT), a2 = b, a3 = xT

b1 = (a + b− xT)T , b2 = x, b3 = bT

In both cases, the Sylvester index is now three, going down by over one half. Thus,
for a given Hessian map H(δx), the Sylvester index is not unique. Moreover, the H(δx)
may have different representations for a specific Sylvester index (as illustrated above).
It is also easy to see that a significant reduction in the Sylvester index might happen
for an expression which contains a large number of Sylvester terms. Based on those
ideas, a few natural questions can be formulated:

1. Given an expression for the Hessian map H(δx), what is the minimum Syl-
vester index associated with this expression?

2. Is there a symbolic algorithm to compute a minimum Sylvester index repre-
sentation?

3. How many different expressions which achieve this minimal Sylvester index
are possible?

4. Does the evaluation time in Step FE vary substantially for small vs. large
Sylvester index N?

This section addresses the first two questions. We describe preliminarily a symbolic
algorithm which is fast and which often reduces the Sylvester index N dramatically.
Later, we describe a more powerful (but slower) symbolic algorithm which gives the
minimal Sylvester index when the coefficients aj and bj are polynomials. For our
problems, the coefficients are not polynomials, but this algorithm applies with no re-
strictions. However, we can no longer guarantee that we obtain the minimal Sylvester
index.

As to question 4, we have found through examples (see §8.3.1) that the overall
computational time spent on numerically solving an optimization problem using our
NCSDP code dramatically reduces when the Sylvester index of the Hessian map H(δx)
is reduced by one of these two algorithms. However, we should consider the time
consumed at the symbolic level by the algorithm itself. We found that the first
algorithm to be presented is faster than the second algorithm. (The second provides
the minimal Sylvester index).

8.1. A Sylvester Index Reducing Algorithm. We now describe our first
Sylvester index reducing algorithm, which is denoted by

NCCollectSylvester[exp, var].

The implementation used in our NCSDP optimization code is a command that sequen-
tially applies two commands, called NCRightSylvester[] and NCLeftSylvester[], to the
expression. These two “sided” commands have analogous implementation, which uses

20 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

a pattern match that “collects” similar terms on the right (respectively on the left)
side of the expression. We now present the idea behind these commands.

Algorithm 8.1 (NCRightSylvester Algorithm).

1. Identify the terms in which the expression should be collected.
In the example given by expression (8.1), this term is δx.

2. Build a “right list.” This list contains the terms that multiplies δx from
the right side (including δx itself). For the expression (8.1), we would obtain

RightList = {δxaT , δxx, δxbT }.

3. Build a “CollectList.” For each element inside RightList, we add to-
gether all the terms that multiply this element from the left side. For our
example we obtain

CollectList = {(a + b− xT), (xT − a), (a + b)}.

4. Combine the CollectList and the RightList. This gives the answer.
For our example it is

H(δx) = (a + b− xT)δxaT + (xT − a)δxx + (a + b)δxbT .

The above “right sided” implementation of the collecting algorithm begins by
building a list of multipliers from the right side of δx. Clearly, a similar implementa-
tion can also be done by obtaining a “left list” of terms that multiplies δx from the left
side, instead of the right side. In this way, we can implement two collect commands
that differ only by the side in which the process of collecting begins, thus, we can have
a NCRightSylvester[] command (described above) and a NCLeftSylvester[] com-
mand. As already mentioned, our implementation encompasses these two commands
into a single command

NCCollectSylvester[exp, var] :=
NCRightSylvester[NCLeftSylvester[exp, vars], vars]

These algorithms when applied to an expression in the Sylvester form, in practice
provide a large reduction on the Sylvester index. However, these algorithms do not
guarantee one can obtain the lowest possible Sylvester index. On the other hand, in
the next section, we provide an algorithm which under some hypothesis provides the
lowest possible Sylvester index.

8.2. The Minimum Sylvester Index Algorithm. Consider a function L(δ)
of a noncommutative variable δ in the Sylvester form

L(δ) :=
N∑

j=1

aj δbj

with the terms aj and bj polynomials in noncommutative variables. The algorithm
proposed in this section has property that if the aj and bj are restricted to be polyno-
mials, then it always gives the lowest possible Sylvester index. This fact is presented
in Theorem 8.3. We now present the steps of the algorithm and give an example. For

SOLVING MATRIX INEQUALITIES 21

this purpose, consider the following expression:

L(δ) = (xb + axb)δ (−2axb + bxb) + (xb + axb)δ (xb− axb + bxb)
− (xb + axb)δ (xb− axb + 2xax) + (xb + axb)δ (xb− 2axb + bxb + xax)

+ (c− xb− bxb + xax)δ (−axb + xax) + (c + axb− bxb + xax)δ (xb + xax)
+ (c + xb + 2axb− bxb + xax)δ (2xb + bxb). (8.2)

The Sylvester index associated with this expression is N = 7. Using our algorithm,
we will see that the minimum Sylvester index is N∗ = 2.

Algorithm 8.2 (MinimumSylvesterIndex Algorithm).
1. Identify the terms in which the expression should be collected.

In the example given by expression (8.2), this term is δ .
2. Build a “right list.” This list contains the terms that multiplies δ from

the right side in L(δ). Denote this list by b. For our example, this list is

b = {(−2axb + bxb), (xb− axb + bxb), (xb− axb + 2xax),
(xb− 2axb + bxb + xax), (−axb + xax), (xb + xax), (2xb + bxb)}.

3. Build a “monomial list.” This list contains the terms that appears in b.
This list, denoted by m, contains only monomial that are linearly indepen-
dents:

m = {xb, axb, bxb, xax}.

4. Find a matrix G such that b = Gm. For our example, G is given by

GT =


1 0 1 1 0 1 2
−1 −2 −1 −2 −1 0 0

0 1 1 1 0 0 1
2 0 0 1 1 1 0

 .

5. Build a “left list.” This list contains the terms that multiplies δ from
the left side in L(δ). Denote this list by a:

a = {(xb + axb), (xb + axb), (xb + axb), −(xb + axb),
(c− xb− bxb + xax), (c + axb− bxb + xax), (c + xb + 2axb− bxb + xax)}.

6. The expression L(δ) can now be rewritten as

L(δ) =
4∑

j=1

cj δmj

with c = GT a given by

c = {3(c + xb + 2axb− bxb + xax), (−c− 3xb− 4axb + bxb− xax),
(c + 4xb + 5axb− bxb + xax), 2(c− xb− bxb + xax)}.

7. Build a “monomial list” from c. For the above example:

m̄ = {c, xb, axb, bxb, xax}.

22 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

8. Find a transformation matrix Ḡ such that c = Ḡm̄:

Ḡ =


3 3 6 −3 3
−1 −3 −4 1 −1

1 4 5 −1 1
2 −2 0 −2 2

 .

9. Decompose matrix Ḡ as Ḡ = QR, with Q and R full rank matrices:

QT =
1
5

[
15 −5 5 10
3 −11 16 −18

]
, R =

1
5

[
5 4 9 −5 5
0 5 5 0 0

]
.

10. The minimal Sylvester index N∗ is the rank of Ḡ. Thus, the final ex-
pression is

L(δ) =
N∗∑
j

[Rm̄]j δ [QT m]j . (8.3)

For our example (8.2), the result is

L(δ) =
1
5
(5 c + 4 xb + 9 axb− 5 bxb + 5 xax)δ (3 xb− axb + bxb + 2 xax)

+
1
5
(xb + axb)δ (3 xb− 11 axb + 16 bxb− 18 xax).

with the minimum Sylvester index guaranteed to be N∗ = 2.
The implementation of our MinimumSylvesterIndex[L(δ), δ] command is

described by these steps. When the original expression L(δ) contains a large number
of Sylvester terms, the time spent on generating the matrix G in Step 4 above might be
long. However, we emphasize that the expression L(δ) provided in Step 6 above can
alternatively be provided by NCRightSylvester[], which is significantly faster than
Steps 1 through 6. In fact, this is how the MinimumSylvesterIndex command was
implemented.

Theorem 8.3. Provided that the aj and bj are polynomials, the lowest Sylvester
index for L(δ) is given by N∗, which is the dimension of the span of cj for j =
1, . . . , db, i.e., the rank of Ḡ.

Proof. This theorem follows immediately from Lemma 8.4 and Lemma 8.6.
Lemma 8.4. The representation (8.3) produced by the MinimumSylvesterIndex

algorithm has the property that the polynomials [Rm̄]1, . . . , [Rm̄]N∗ are linearly inde-
pendent and that the polynomials [QT m]1, . . . , [QT m]N∗ are also linearly independent.

Proof. Since the vectors mj are linearly independent and Q has full rank, the
vectors [QT m]j for j = 1, . . . , N∗ are linearly independent. Similarly, since the vectors
m̄j are linearly independent and R has full rank, the vectors [Rm̄]j for j = 1, . . . , N∗

are linearly independent.
Definition 8.5. We call a dependence free Sylvester representation any Syl-

vester expression L(δ) =
∑

aj δbj with aj linearly independent and bj also linearly
independent.

Lemma 8.6. Let L(δ) and L̃(δ) be Sylvester representations such that

L(δ) :=
N∑

j=1

aj δbj =
eN∑

k=1

ãk δ b̃k =: L̃(δ).

SOLVING MATRIX INEQUALITIES 23

If the polynomials aj are linearly independent, and if the polynomials bj are linearly
independent, then for each k = 1, . . . , Ñ we have

aj ∈ span {ãk}
eN
1 and bj ∈ span

{
b̃k

} eN
1

.

Consequently N ≤ Ñ , and if L̃(δ) is also a dependence free Sylvester representation,
then their Sylvester indexes are the same, Ñ = N .

Proof. Let β denote the maximum of the degrees of all of the polynomials
aj , bj , ãk, b̃k for j = 1, . . . , N and k = 1, . . . , Ñ . Let P(y) denote the space of all
polynomials of degree less than or equal to β in y = {y1, . . . , yg}. Let P(y)δ denote
all polynomials in the variables {y1, y2, . . . , yg, δ} of the form p(y)δ for p ∈ P(y).
Since {bj} for j = 1, . . . , N is a linearly independent subset of the finite dimensional
vector space P(y), there is an inner product (,) defined on P(y) satisfying

(bi, bj) =
{

0, i 6= j
1, i = j .

(8.4)

For each p ∈ P(y), let us define a map E : P(y)→ P(y)δ for any Sylvester form by

E(L(δ), p) :=
N∑

j=1

aj δ (bj , p) =
N∑

j=1

(bj , p)aj δ .

With this notation, for each ` ≤ N we obtain

E(L(δ), b`) =
N∑

j=1

aj δ (bj , b`) = a` δ .

Since L(δ) = L̃(δ) we have

E(L(δ), b`) = E(L̃(δ), b`) −→ a` δ =
eN∑

k=1

(b̃k, b`)ãk δ .

Thus, the polynomial a` is a linear combination of the polynomials ãk, i.e., a` ∈
span{ãk}. In a similar way, we can define an inner product (ai, aj) satisfying property
(8.4), and apply it to L(δ) to obtain that b` ∈ span{b̃k}.

8.2.1. Rational coefficients. We have presented an algorithm which has the
property that if the aj and bj are polynomials, then it always gives the lowest possible
Sylvester index. However, in our optimization application the aj and bj may be
rational functions. Thus, we shall describe how one can extend the algorithm to
rational functions rather than polynomials.

The conceptual idea is to think of inverses of expressions as new variables, say wj .
Then any rational expression is a polynomial in the original variables together with
the new letters wj . In this way, one can apply directly the Sylvester index minimizing
algorithm. As an example, suppose that L(δ) is given by

L(δ) = x(1− x)−1 δx− (1− x)−1 δx + δx. (8.5)

Using the change of variable

w = (1− x)−1 (8.6)

24 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

this expression can be written as

L(δ) = xwδx− wδx + δx.

Now, one can apply the MinimumSylvesterIndex command to obtain

L(δ) = (xw − w + 1)δx.

In this way, the Sylvester index for L(δ) was reduced to N = 1.
That is how the MinimumSylvesterIndex command is used in NCSDP. Unpleas-

antly, the algorithm did not take into account the “side relationships” that wj and
the other variables might satisfy, which for the above example is

(1− x)−1 ≡ x(1− x)−1 + 1

or in terms of w

xw − w + 1 = 0.

Consequently L(δ) is identically zero. Thus, our algorithm when applied to rational
functions fails to produce a minimal Sylvester representation.

To some extent, we are not optimistic about finding a practical exact algorithm for
L(δ) having rational coefficients, because noncommutative Gröbner basis algorithms
are very time consuming. However, we are looking into more empirical methods. One
effective test for linear dependence is as follows. Suppose that

L(δ) =
N∑

j=1

aj δbj

has already been reduced with the command MinimumSylvesterIndex. Then, we
replace the symbols appearing in the expressions for aj and for bj by matrices of large
dimensions generated randomly. In this way, we obtain random large matrices Aj

and Bj . After, we build numerically the matrices A and B as follows:

A =
[
vec(A1) vec(A2) · · · vec(AN)

]
B =

[
vec(B1) vec(B2) · · · vec(BN)

]
Naturally, N is the number of columns of A and B. Denoting by rA the rank of the
matrix A (respectively rB for the rank of B), then, the minimum Sylvester index for
L(δ) will be min(rA, rB). If the Aj and Bj are polynomials, then we know that rA

and rB remains N . However, when the Aj and Bj are rational functions rather than
polynomial, this might not be the case, as described by the above example (8.5).

An optimization problem will be presented in §8.3.1 in which the Sylvester index of
the Hessian map is N = 1043. After applying the MinimumSylvesterIndex command,
the Sylvester index was reduced to N = 26. However, N = 26 is not the lowest
possible index for this Hessian map. When we apply the empirical procedure just
described above, we found that rA = 22 and rB = 22. Therefore, we know that the
minimum Sylvester index is less than or equal to N = 22. An empirical algorithm
along these lines for actually computing the dependences is under investigation.

Remark 8.7. Another step is taken in order to improve the overall timing,
and it is not related to the idea of simplifying expressions by collecting terms, but

SOLVING MATRIX INEQUALITIES 25

it is valuable. At the symbolic level we look for inverses of matrices which appear
repeatedly inside the symbolic expressions for the Hessian map and we replace each
occurrence of an inverse by a new variable. In this way, all numerical inverses are
evaluated only once at the beginning of the linear subproblem. This can considerably
improve the overall run times.

8.3. Experiments with MinimumSylvesterIndex. The previous examples
were presented in order to illustrate methods for reducing the Sylvester index. Now,
we present numerical evidence validating the usefulness of these ideas. For this pur-
pose, let us consider the following eigenvalue minimization problem, whose numerical
behavior is to be presented in §9:

inf λmax(CXCT)
subject to

(P2)

0 < X

0 < G(X) := A3X + XAT
3 −XR−1

3 X + S3

0 < F (X) := A1X + XAT
1 −XR−1

1 X + S1 − (AT
2 X + XA2)G(X)−1(AT

2 X + XA2)

with all the matrices having dimension n× n.
As already described, we need to compute symbolically the Hessian and the gradi-

ent of an auxiliary potential function. For the above example, this potential function
is given by the following symbolic formula

φγ(x) = − log det x− log det F (x)− log det G(x)− log det(γId − cxcT).

where Id stand for the symbolic analog of the identity matrix and γ is a scalar which
is not relevant here. The expression φγ(x) is a function of the unknown x. If the
update direction is taken to be δx, the Hessian map H(δx) as a function of δx will
have a structure of the form

H(δx) =
N∑
i

aiδxbi.

where the a’s and b’s are noncommutative rational functions of the variables c, a1,
a2, a3, r1, r3, s1, s3, x. At his stage, one can apply the MinimumSylvesterIndex
command to reduce the Sylvester index N . The gradient map Q is obtained from the
first directional derivative of φγ(x) along the direction δx. Thus, for this symmetric
case, one obtains a “symbolic” system given by

H(δx) = Q + QT . (8.7)

The next step is to substitute for matrices of compatible dimensions the symbols
appearing in H(δx) and Q. Thus, the code becomes numerical, and to find numerically
the update direction δX , we must be able to solve the linear system of equations given
by

H(δX) = Q + QT .

Using the vec operation, the above system can be equivalently written as

Hv = g (8.8)

where H =
∑N

i BT
i ⊗Ai, g = vec(Q + QT), and v = vec(δX).

Therefore, in order to solve numerically the linear system given in (8.7), one needs:

26 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

FE: to substitute matrices for the symbols appearing in H(δx) and Q;
KP: to evaluate the Hessian matrix H by applying N Kronecker products;
LS: to solve the system Hv = g for the update direction v.
The first two steps, namely FE and KP, are the two main steps where reducing the

Sylvester index N of the expression for H(δx) can significantly affect the evaluation
time. We do not show the formulas for H(δx) and Q, since these expressions are
quite large and would consume several pages. What is important is the fact that the
formula for H(δx) as computed originally, before applying any simplification rule, has
N = 1014 Sylvester terms. However, after applying the NCCollectSylvester command
to the original expression, the Sylvester index decreases to N = 43, and after applying
our MinimumSylvesterIndex command to the original expression, we obtain the index
N = 26 for this Hessian.

8.3.1. Time saved by applying MinimumSylvesterIndex. To find out how
much time is actually saved at the numerical level, the NCSDP code is executed using
the collected formulas for H(δx) with N = 26 (MinimumSylvesterIndex command)
and with N = 43 (NCCollectSylvester command), and the not collected formula for
H(δx) with N = 1014. For this set of experiments, the size n of the matrices involved
assume the following values n = 16, 32, 64. For each case, we execute the inner loop
where the linear system (8.8) is numerically solved 20 times. Thus, we measure the
CPU time per call (average over 20 iterations) spent on the above items, FE (formula
evaluations), KP (Kronecker products), and LS (linear solver). In this way, we can
analyze how the time spent on formula evaluations behaves as a function of the size
of the matrices involved in the expressions, as well as the Sylvester index N .

The results are presented in Table 8.1, where MSI stands for the Hessian simplified
by MinimumSylvesterIndex (the Sylvester index is N = 26), CS stands for the Hessian
simplified by NCCollectSylvester (the Sylvester index is N = 43), and UNT stands for
the untreated Hessian (the Sylvester index is N = 1014). In this table, the row labeled
“Ratio” is the ratio between the untreated column and the MSI column. The time
spent on solving the linear system, presented in the row labeled LS, is not affected by
the expression being or not being collected. The other labels are as follows: SIZE for
matrix size, FE for formula evaluation, KP for Kronecker product, and TOT for the
total time FE+KP+LS.

Table 8.1
Timing (seconds): formulas evaluation, Kronecker products, and linear solver.

SIZE 16 32 64
MSI CS UNT MSI CS UNT MSI CS UNT

FE 0.071 0.096 0.409 0.258 0.287 1.09 1.47 1.74 6.1
KP 0.039 0.061 1.341 0.603 0.974 21.47 9.74 15.71 344.3
LS 0.029 0.028 0.029 0.397 0.410 0.41 9.65 9.87 9.8

TOT 0.139 0.185 1.779 1.258 1.671 22.96 20.85 27.31 360.1

Ratio UNT / MSI UNT / MSI UNT / MSI
FE 5.8 4.2 4.1
KP 34.4 35.6 35.3

TOT 12.8 18.3 17.3

The results provided in Table 8.1 show that collecting terms in the expression

SOLVING MATRIX INEQUALITIES 27

for the Hessian map H(δx) represents a huge saving, since the average time spent on
substituting matrices for the symbols that appear in the expressions for the ai and
bi when the expressions are not collected (UNT case) is approximately four to five
times longer than the time for the MSI collected case (row FE in Ratio). Moreover,
collecting the expressions significantly improved the time spent on evaluating Kro-
necker products, as seen from row KP in Ratio, where this timing improved by a
factor ranging from 34.4 to 35.6.

For matrices of dimension 16 and 32, the time per call spent (over 20 iterations)
on numerically solving the equation Hv = g for the unknown v was relatively small,
as seen from row LS. On the other hand, for matrices of dimension 64, the (LS) cost
becomes significantly large. To understand this fact better, suppose the dimension of
the matrices involved is chosen to be n = 64. Thus, the symmetric unknown matrix
X having size 64× 64 implies that the unknown vector v and the system to be solved
will have size approximately 642/2 = 2048.

Kronecker products are also extremely expensive, as seen from row KP for size 64.
In fact, if we did not have a theory for decreasing the Sylvester index, our approach
using Kronecker products would be intractable for matrices of large dimensions. If
one could solve the linear system of equations for δX in its original structured form
H(δX) = Q, without applying Kronecker products and keeping the dimension of the
linear system low, a huge saving on the numerical linear solver would probably be
attained. This is an open area which we hope members of the community will pursue.

8.4. Some More Experiments Using MinimumSylvesterIndex. Another
interesting experiment is to analyze how the Sylvester index behaves by applying our
MinimumSylvesterIndex command to a variety of matrix inequalities which appear
in control design. The example just presented, taken from §9, has shown a great
improvement since the Sylvester index reduced from N = 1014 to N = 26. Now, we
present two more examples.

Example 8.1. For the following standard Riccati inequality:

AX + XAT −XRX + S > 0

the Hessian map H(δx) for the untreated case has a Sylvester index of N = 20,
while our MinimumSylvesterIndex algorithm applied to it provides a Sylvester index
of N = 4.

Example 8.2. Now, a more realistic example is used. A mixed H2/H∞ control
problem:

inf Tr {W}
subject to

(P3)

0 < X

0 < W − (C2X + D2uF)X−1(C2X + D2uF)T

0 > AX + XAT + BuF + FT BT
u + BwBT

w+[
XCT

1 + FT DT
1u + BwDT

1w

]
R−1

[
XCT

1 + FT DT
1u + BwDT

1w

]T

with R = η2I −D1wDT
1w > 0.

For the above control problem, there are three unknowns denoted by W = WT ,
X = XT , and F (not symmetric). Thus, the linear subproblem to be solved will have

28 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

dimension 3× 3, and consequently each entry on this system will contain a Sylvester
operator. For instance, the (1,1) entry will be an expression of the form

N11∑
i

a11
i δwb11

i +
N̂11∑

i

â11
i δw

T b̂11
i .

The (1,2) entry will have the form
∑N12

i a12
i δxb12

i +
∑N̂12

i â12
i δT

x b̂12
i . The (1,3) entry

will have the form
∑N13

i a13
i δfb13

i +
∑N̂13

i â13
i δT

f b̂13
i . The (2,1) entry is the adjoint case

of the (1,2) entry. The (2,2) entry will have the form
∑N22

i a22
i δxb22

i +
∑N̂22

i â22
i δT

x b̂22
i

and so forth. It should be noticed that the Sylvester index N̂11, N̂12, N̂21, and N̂22

are zero, since the corresponding variables w and x are symmetric.

Table 8.2
Sylvester index N and N̂ for the MSI Hessian H(δw, δx, δf).

Sylv. index Nij Sylv. index N̂ij

i,j 1 2 3 1 2 3

1 1 2 1 0 0 1
2 2 10 4 0 0 4
3 1 4 2 1 4 4

For the matrix inequalities given in problem (P3), the set of Sylvester indexes
N and N̂ for the Hessian map H(δw, δx, δf) simplified by MinimumSylvesterIndex
(MSI case) and for the untreated Hessian (UNT case) are respectively presented in
Table 8.2 and Table 8.3.

Table 8.3
Sylvester index N and N̂ for the UNT Hessian H(δw, δx, δf).

Sylv. index Nij Sylv. index N̂ij

i,j 1 2 3 1 2 3

1 1 2 2 0 0 2

2 2 73 38 0 0 38

3 2 38 42 2 38 38

In Table 8.2 and Table 8.3, the variables x and f are associated with the entries

(i,j) ∈ {(2, 2) (2, 3) (3, 2) (3, 3)}

for each one of the subtables. If we only pay attention to the Sylvester index N , we
see that the submatrix associated with x and f for the

UNT case
73 38

38 42
reduces to only

10 4

4 2
in the MSI case.

Similarly, a large reduction is also obtained for the Sylvester index N̂ . Thus, for the
variables x and f , we found that a large reduction on the Sylvester index N and N̂

SOLVING MATRIX INEQUALITIES 29

are obtained after applying our MinimumSylvesterIndex command. Naturally, this
will represent a considerable saving on the evaluation time for the numerical linear
solver.

It is also true that the process of simplifying rational functions, at the symbolic
level of Mathematica, can consume a considerable amount of time. However, this
computation is performed only once at the beginning of the run. This is in contrast
with the numerical part, where solving the linear system to provide the update direc-
tion takes place at each inner iteration (which occurs several times). Therefore, the
ability to collect factors in an expression (decreasing the Sylvester index) plays a very
important role.

9. Numerical Experiment: Timing of NCSDP. In this section, our NCSDP
code is numerically compared to some available semidefinite programming solvers.
For this purpose, the optimization problem to be used is the following eigenvalue
minimization problem (stated earlier in §8.3.1):

inf λmax(CXCT)
subject to

(P2)

10−1I < X

0 < G(X) := A3X + XAT
3 −XR−1

3 X + S3

0 < F (X) := A1X + XAT
1 −XR−1

1 X + S1 − (AT
2 X + XA2)G(X)−1(AT

2 X + XA2)

The matrices C, A1, A2, and A3 belong to Rn×n, the invertible matrices R1, R3,
belong to Sn

++ and the matrices S1, S3, and X belong to Sn. We do not present the
numerical values of those matrices since it would take considerable space. Note that
by Schur complement techniques the above problem (P2) can be equivalently restated
as an LMI problem.

The results of this experiment (in Table 9.1) show the overall CPU time spent by
the solvers SDPT3, LMI-Lab, SeDuMi, and NCSDP, to solve the above optimization
problem (P2) within the required accuracy of 10−4 for the objective value. The LMI-
Lab toolbox (Version 1.0.8) is based on the projective method of [8]. The SeDuMi
solver (Version 1.02) from [25] implements the self-dual embedding technique for opti-
mization over self-dual homogeneous cones. The SDPT3 solver (Version 3.0) from [28]
implements a infeasible path-following algorithm that employs a predictor-corrector
method. The starting feasible points were the same for all the solvers.

Table 9.1
Total CPU time in seconds.

Matrix Size
8 16 32 64

SDPT3 2.59 12.94 163.77 3132.68
LMI-Lab 0.43 2.58 66.03 2124.54
SeDuMi 0.79 2.20 33.63 1254.30
NCSDP 7.73 12.57 81.40 1224.49

From Table 9.1, one sees that for matrices of size 64, the solvers SeDuMi and
NCSDP were the fastest code for the above eigenvalue minimization problem (P2).

30 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

The CPU times per iteration (CPI) and number of (outer) iterations (IT) are presented
in Table 9.2. We believe that NCSDP might be significantly faster than SeDuMi for
matrices of dimensions larger than 64× 64. However, we did not run this experiment
since the overall elapsed time would be extremely long, as well as the requirement of
large RAM memory availability. The computer used for our experiments was a Intel
Celeron at 2800 MHz cpu clock, 512MB of RAM, 1GB of swap, running Linux (kernel
2.4.20-31.9), MATLAB Version 6.5.0 R13, Mathematica 4.0, and NCAlgebra Version
3.7.

Table 9.2
CPU time per iteration in seconds.

Matrix Size
16 32 64

CPI IT CPI IT CPI IT

SDPT3 1.62 8 18.20 9 348.08 9
SeDuMi 0.20 11 2.59 13 89.59 14
NCSDP 0.60 21 4.28 19 72.03 17

We believe the reasons why our NCSDP code, even in its raw stage, has been
competitive is mainly due to the fact that it allows nonlinear matrix inequalities, so it
avoids the increase in dimensions when converting to LMIs using Schur complements.
Also, we think that the techniques in the paper allow the numerical Newton equations
to be derived more efficiently. However, we did not take advantage of the special
structure of the linear subproblem when solving it.

For these experiments, we installed the codes listed above using their default
installer. However, since these codes are for general SDP problems, where the input
data should be expressed in a “standard” SDP form, which is not the standard LMI
form (like the input from LMILab), we make use of the package LMILab Translator
(LMITrans) that translates from LMILab form to the SeDuMi and SDPT3 form.
The timing presented in Table 9.1 did not incorporate the (modest amount of) time
consumed by this interface.

We do not know if LMITrans does nearly the “optimal” conversion for each solver;
this adds uncertainty to the experiments. It might be the case that there exists an
optimal conversion for a particular solver, in this case, the solver would perform better
than for the default options used in LMITrans. However, we also used YALMIP as a
front-end for SeDuMi and SDPT3 at the suggestion of a referee after the paper was
complete. In a few tests, we found that it did not effect the timings significantly: the
timing was approximately the same as the timing obtained using LMITrans.

9.1. Numerical Behavior of NCSDP. We now provide the numerical details
of the results from NCSDP presented in the previous Table 9.1. The trade-off between
the number of inner iterations, NeNe, and the number of outer iterations, Iter, (as
seen from Table 9.3) is a characteristic of Barrier methods, in particular, the method
of centers ([2]), and depends mainly on the centralization parameter θ, given in (6.1)
from §6.2. In practice, a smaller θ induces a higher number of inner iterations, NeNe.
For all the experiments, θ was set to θ = 0.2.

For matrices of small size, the most expensive part is the time spent on evaluating
the Sylvester terms ai, bi, and Q, presented in column FE. However, when the size

SOLVING MATRIX INEQUALITIES 31

Table 9.3
Numerical behavior of NCSDP.

SIZE IT/NeNe FE KP LS g λmin(H) λmax(H)

8 25/94 2.32 0.07 0.14 1.14E + 04 6.74E + 03 2.59E + 10

16 21/75 3.05 2.88 2.16 8.94E + 03 1.62E + 03 2.41E + 10

32 19/69 8.24 41.9 26.7 7.38E + 03 1.14E + 03 2.24E + 10

64 17/61 43.4 595 580 5.84E + 03 9.81E + 02 2.76E + 10

of the matrices increases above 8, the time spent on Kronecker products, column KP,
and the time spent on solving the linear system, column LS, begins to dominate.

In the above table, the column g stands for the gradient, and columns λmin(H)
and λmax(H) stand respectively for the minimum and the maximum eigenvalues of
the Hessian matrix H at the optimum. Those values show that the condition number
of the Hessian is large at the optimal solution. This ill-conditioning in the Hessian
is a well known fact for classical barrier methods ([30, 18]), where it has been shown
that this behavior is highly influenced by the set of constraints that are or are not
active (binding) at the solution. However, it is not an immediate task to determine
the set of active constraints in the semidefinite programming framework.

9.2. Implementation Speed Ups. At this stage, the numeric part of our
NCSDP code is “completely” implemented using MATLAB functions (not compiled).
The only compiled part of our code is the Kronecker product, since the MATLAB
function kron.m was extremely slow for our needs. On the other hand, most of the
other solvers have their core subroutines written in either Fortran or C, which signif-
icantly improve their overall performance.

To make the experiment transparent the stopping criteria for the inner loop in
NCSDP is kept constant throughout all the iterations. We stop as soon as σ = 1 (see
§6.3). Changing dynamically this stopping criteria, might also improve the timing of
the solver.

Even though in this paper we have focused on convex optimization problems over
matrix inequalities, the extension of our numerical ideas to finding local solutions in
nonconvex situations is immediate, however, reliability has not been tested [4].

We reiterate that fast methods for solving numerical linear equations of Sylvester
form have not been investigated, and are the main open question motivated by this
paper. A big advance here would translate directly into a big reduction in run times.

REFERENCES

[1] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, Primal-dual interior-point methods
for semidefinite programming: Convergence rates, stability and numerical results, SIAM
J. Optim., 8 (1998), pp. 746–768.

[2] S. Boyd and L. El Ghaoui, Method of centers for minimizing generalized eigenvalues, Lin-
ear Algebra and its Applications, special issue on Numerical Linear Algebra Methods in
Control, Signals and Systems, 188 (1993), pp. 63–111.

[3] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, New York,
USA, 2004.

[4] J. F. Camino, Optimization over Convex Matrix Inequalities, PhD thesis, University of Cali-
fornia, San Diego, 2003.

32 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

[5] J. F. Camino, J. W. Helton, R. E. Skelton, and J. Ye, Matrix inequalities: A symbolic
procedure to determine convexity automatically, Integral Equations and Operator Theory,
46 (2003), pp. 399–454.

[6] L. El Ghaoui and S. Niculescu, Advances in Linear Matrix Inequality Methods in Control,
Advances in Design and Control, SIAM, Philadelphia, PA, USA, 1999.

[7] A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained
Minimization Techniques, Classics in Applied Mathematics, SIAM, Philadelphia, PA, USA,
1990.

[8] P. Gahinet, A. Nemirovskii, A. J. Laub, and M. Chilali, LMI Control Toolbox, The Math
Works, Inc., USA, 1995.

[9] G. Golub and C. V. Loan, Matrix Computation, The Johns Hopkins University Press, Balti-
more, USA, and London, UK, 1983.

[10] E. L. Green, Multiplicative bases, gröbner bases, and right gröbner bases, Journal of Symbolic
Computation, 29 (2000), pp. 601–623.

[11] J. W. Helton and J. J. Wavrik, Rules for computer simplification of the formulas in operator
model theory and linear systems, in Nonselfadjoint operators and related topics (Beer
Sheva, 1992), vol. 73 of Oper. Theory Adv. Appl., Birkhäuser, Basel, 1994, pp. 325–354.

[12] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New
York, USA, 1999.

[13] K. Jbilou and A. Messaoudi, Matrix recursive interpolation algorithm for block linear systems
direct methods, Linear Algebra and its Applications, (1999), pp. 137–154.

[14] M. Konstantinov, V. Mehrmann, and P. Petkov, On properties of Sylvester and Lyapunov
operators, Linear Algebra and its Applications, 312 (2000), pp. 35–71.

[15] F. Leibfritz and E. M. Mostafa, An interior point constrained trust region method for a
special class of nonlinear semidefinite programming problems, SIAM J. Optim., 12 (2002),
pp. 1048–1074.

[16] A. S. Lewis and M. L. Overton, Eigenvalue optimization, Acta Numerica, (1996), pp. 149–
190.

[17] P. A. Linnell, Noncommutative localization in group rings. The mathematics arXiv (E-Print)
Archive, 2003.

[18] W. Murray, Analytic expression for the eigenvalues and eigenvectors of the Hessian matrices
of barrier and penalty functions, Journal of Optimization Theory and Applications, 7
(1971), pp. 189–196.

[19] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Program-
ming, vol. 13 of Studies in Applied Mathematics, SIAM, Philadelphia, PA, USA, 1994.

[20] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Classics in Applied Mathematics, SIAM, Philadelphia, PA, USA, 2000.

[21] M. L. Overton, On minimizing the maximum eigenvalue of a symmetric matrix, SIAM J.
Matrix Anal. Appl., 9 (1988), pp. 256–268.

[22] P. A. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in
Robustness and Optimization, PhD thesis, California Institute of Technology, 2000.

[23] R. E. Skelton, T. Iwasaki, and K. M. Grigoriadis, A Unified Algebraic Approach to Linear
Control Design, Taylor & Francis, London, 1998.

[24] M. Stankus, J. W. Helton, and J. Wavrik, Computer simplification of formulas in linear
systems theory, IEEE Trans. Automat. Contr., 43 (1998), pp. 302–314.

[25] J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,
Optimization Methods and Software, 11/12 (1999), pp. 625–653.

[26] , Implementation of interior point methods for mixed semidefinite and second order cone
optimization problems, Optimization Methods and Software, 17 (2002), pp. 1105–1154.
Special 10th anniversary issue.

[27] M. J. Todd, Semidefinite optimization, Acta Numerica, 10 (2001), pp. 515–560.
[28] K. C. Toh, M. J. Todd, and R. H. Tütüncü, SDPT3 - A MATLAB software package for

semidefinite programming, version 2.1, Optimization Methods and Software, 11 (1999),
pp. 545–581.

[29] H. Wolkowicz, R. Saigal, and L. Vandenberghe, eds., Handbook of Semidefinite Program-
ming, vol. 27 of International Series in Operations Research and Management Science,
Kluwer Academic Publishers, Boston, Mar. 2000.

[30] M. H. Wright, Interior methods for constrained optimization, Acta Numerica, (1992), pp. 341–
407.

SOLVING MATRIX INEQUALITIES 33

Appendix A. Illustrating Our Methodology by an Example.
In this section we explain the ideas behind Theorem 7.1 and Corollary 7.2.

throughout a simple optimization problem. The extrapolation to a more general
case is straightforward, but it gives messy formulas. Let us consider the following
optimization problem:

min {Tr {X} : X ∈ closure(G)} (A.1)

with F (X) := AX + XAT −XRX + Q, and the domain G given by

G = {X ∈ Sn : F (X) > 0} .

We assume: 1) all matrices have dimension n × n; 2) the matrices X, R, Q are
symmetric; 3) the closure of the set G is compact.

A.1. Describing the Central Path. Let us define the unconstrained auxiliary
potential function φγ(X) as described in Theorem 7.1 from Section 7.2 as

φγ(X) = ζ log
(
1/(γ − Tr {X})

)
− log det F (X). (A.2)

The analytic center for the potential φγ(X) is the path given by

X∗(γk) = argminφγk(X). (A.3)

A.2. Solving for the Analytic Center. The above optimization problem
(A.1) has now been replaced by a sequence of unconstrained minimization problems
in the form (A.3). In this way, we are interested in finding update directions which
lead toward to the central path of (A.3). To find those directions, Newton’s method is
applied to minimize the second-order Taylor series expansion of the potential function
φ(x).

These procedures are summarized in §7.1. Here, we go through each step precisely.
For clarity of notation, we omit the subscript γ in φγ(x). To compute the quadratic
approximation of φ(x), we take δx to be the update direction for x. Thus, assuming
x∗ = x + δx, the series expansion of φ(x) up to the second term is given by

φ̃(δx) := φ(x∗)− φ(x) = Dφ(x) [δx] +
1
2
D2φ(x) [δx, δx] . (A.4)

A.3. Directional Derivatives of F (x). In order to compute the derivatives in
Eq. (A.4), we need to have at hand the first and second directional derivatives of
F (x). Recalling that x is symmetric, and therefore so is the update direction δx, the
first directional derivative of F (x) in the direction δx is given by

DF (x) [δx] = (a− xr)δx + δx(aT − rx) = sym {(a− xr)δx}

and the second directional derivative is

D2F (x) [δx, δx] = − sym {δxrδx}

34 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

A.4. Connection with Theorem 7.1. Comparing the above derivatives of
F (x) with the formulas (4.2) and (4.3), one readily verifies that k = 1, a1 = (a− xr),
and b1 = 1, for the first directional derivative, and that w1 = 1, w2 = 0, w3 = 0,
m1 = 1, n1 = −r, and t1 = 1, for the second directional derivative. With this
notation, we can directly apply Theorem 7.1 to obtain the algebraic linear system of
equations. For the gradient term Q we have

Q =
k∑

i=1

aT
i F (x)−1bT

i −
1
2
ζ (γ − Tr {x})−1

Id

= (a− xr)T F (x)−1 − 1
2
ζ(γ − Tr {x})−1Id.

For the Hessian H(δx) we calculate:
1.

∑k
i=1

∑k
j=1 aT

i F (x)−1ajδxbjF (x)−1bT
i = (a− xr)T F (x)−1(a− xr)δxF (x)−1;

2.
∑k

i=1

∑k
j=1 aT

i F (x)−1bT
j δT

x aT
j F (x)−1bT

i = (a−xr)T F (x)−1δx(a−xr)F (x)−1;

3. −
∑w1

j=1 nT
j δT

x mT
j F (x)−1tTj + mT

j F (x)−1tTj δT
x nT

j = rδxF (x)−1 + F (x)−1δxr.
Thus H(δx) becomes

H(δx) =
1
2
F (x)−1δxr +

1
2
rδxF (x)−1 + (a− xr)T F (x)−1(a− xr)δxF (x)−1

+ (a− xr)T F (x)−1δx(a− xr)T F (x)−1 +
1
2
ζ(γ − Tr {x})−2 Tr {δx} Id.

Consequently, the algebraic linear system of equations is described by

Tr
{
δV (H(δx)− Q)T + (H(δx)− Q)δV

}
= 0 (A.5)

with H(δX) and Q as given above
These are the steps someone would need in order to apply Theorem 7.1 directly.

However, we shall go through the details of the manipulation that leads to this main
result.

A.5. Directional Derivatives of the Barrier Function. Having the above
directional derivatives of F (x) available, we are ready to take the directional deriva-
tives needed in (A.4). However, to clarify the exposition, we split the potential func-
tion in two parts:

φ1(x) = − log det F (x) and φ2(x) = ζ log
(
1/(γ − Tr {x})

)
.

A.6. Symbolic Directional Derivatives of φ1(x) = − log det F (x). The first
and second directional derivative of φ1(x) in the direction δx are given by

Dφ1(x) [δx] = −Tr
{
F (x)−1DF (x) [δx]

}
= −Tr

{
F (x)−1 sym {(a− xr)δx}

}
D2φ1(x) [δx, δx] = Tr

{(
F (x)−1DF (x) [δx]

)2
}
− Tr

{
F (x)−1D2F (x) [δx, δx]

}
= Tr

{(
F (x)−1 sym {(a− xr)δx}

)2
}

+ Tr
{
F (x)−1 sym {δxrδx}

}

SOLVING MATRIX INEQUALITIES 35

A.7. Symbolic Directional Derivatives of φ2(x) = ζ log
(
1/(γ − Tr {x})

)
.

The first derivative is given by

Dφ2(x) [δx] = ζ (γ − Tr {x})−1 Tr {δx} ,

and the second by

D2φ2(x) [δx, δx] = ζ
(
(γ − Tr {x})−1 Tr {δx}

)2

.

A.8. Optimality Conditions. Now we are ready to write down the optimality
conditions which will provide the update direction. These conditions are the first-order
necessary optimality conditions for problem (A.3), obtained by taking directional
derivatives of the Taylor expansion φ(x + δx), given by Eq. (A.4), as a function of
δx in the direction δV . To accomplish this step, we should compute Dφ̃(δx) [δV] or
equivalently

D

(
Dφ(x) [δx] +

1
2
D2φ(x) [δx, δx]

)
[δV] = 0 (A.6)

Using the directional derivatives just computed in the previous sections, the ex-
pression for the second-order approximation φ̃(δx) is given

φ̃(δx) = −Tr
{
F (x)−1 sym {(a− xr)δx}

}
+

1
2

Tr
{(

F (x)−1 sym {(a− xr)δx}
)2

}
+

1
2

Tr
{
F (x)−1 sym {δxrδx}

}
+ ζ (γ − Tr {x})−1 Tr {δx}

+
1
2
ζ

(
(γ − Tr {x})−1 Tr {δx}

)2

. (A.7)

To proceed, we now set to zero the directional derivative of φ̃(δx) as a function of
δx in the direction δV . After a few manipulations, the term Dφ̃(δx) [δV] is given by

Dφ̃(δx) [δV] = Tr
{

δV

(
F (x)−1δx(a− xr)T F (x)−1(a− xr)− F (x)−1(a− xr)

+
1
2
rδxF (x)−1 +

1
2
F (x)−1δxr + F (x)−1(a− xr)δxF (x)−1(a− xr)

+
1
2
ζ(γ − Tr {x})−1Id +

1
2
ζ(γ − Tr {x})−2 Tr {δx} Id

)
+

(
(a− xr)T F (x)−1(a− xr)δxF (x)−1 − (a− xr)T F (x)−1

+
1
2
F (x)−1δxr +

1
2
rδxF (x)−1 + (a− xr)T F (x)−1δx(a− xr)T F (x)−1

+
1
2
ζ(γ − Tr {x})−1Id +

1
2
ζ(γ − Tr {x})−2 Tr {δx} Id

)
δV

}
.

Therefore, the algebraic linear system of equations is described by

Tr
{
δV (H(δx)− Q)T + (H(δx)− Q)δV

}
= 0 (A.8)

36 J. F. CAMINO AND J. W. HELTON AND R. E. SKELTON

with H(δX) and Q respectively given by

Q = (a− xr)T F (x)−1 − 1
2
ζ(γ − Tr {x})−1Id

H(δx) =
1
2
F (x)−1δxr +

1
2
rδxF (x)−1 + (a− xr)T F (x)−1(a− xr)δxF (x)−1

+ (a− xr)T F (x)−1δx(a− xr)T F (x)−1 +
1
2
ζ(γ − Tr {x})−2 Tr {δx} Id.

A.9. Connection with Theorem 7.1. We shall emphasize that this illustra-
tive example gives a reasonable idea of how the proof of Theorem 7.1 was constructed,
since it follows very similar steps.

A.10. The Algebraic Linear System of Equations. Since the unknown x is
restricted to being symmetric (so is δx) the subspace V equals the space of symmetric
matrices. Consequently, its orthogonal complement V⊥ is the set of all skew symmetric
matrices. Therefore, we obtain the following linear system in δx

H(δx) + H(δx)T = Q + QT

We can rewrite this equation using a suitable choice of variables ai and bi as follows:

sym

{
4∑

i=1

(
aiδxbi

)}
+ % Tr {δx} = Q + QT (A.9)

with

a1 = F (x)−1(a− xr) b1 = F (x)−1(a− xr)

a2 = F (x)−1 b2 = (a− xr)T F (x)−1(a− xr)

a3 =
1
2
F (x)−1 b3 = r

a4 = r b4 =
1
2
F (x)−1

and

Q = (a− xr)T F (x)−1 − 1
2
ζ(γ − Tr {x})−1Id, % =

1
2
ζ(γ − Tr {x})−2Id.

A.11. Connection with Corollary 7.2. These are the ai and bi described in
the corollary for the specific case where the subspace V equals the space of symmetric
matrices Sn. The proof of Corollary 7.2 is illustrated by our example, since the proof
mainly consists in determining the orthogonal complement of the subspace V.

