
Systems with Infinite-Dimensional State Space: 
The Hilbert Space Approach 

Abstract-The contrd of infmitedimensional systems has received 
much attention from engineers and  even  mathematicians Realizability 
although fmt considered m [4] has been ignored until recently. Ironi- 
d y  enough while state-space  systems  theory  was  developing in the 
edy  1960’s a  mathematical study of scattering  and of wn-selfadjoint 
operptors  produced  a  parallel  theory  which was infmite  dimensional 
%om the beginning. When the dose relationship between the two sub 
jects became known time invariant infiitedimensional s y s t e m s  theory 
advanced quickly and at a general  level it now  seems reasonably com- 
plete. This paper desaibes the connection between  mathematical  scat- 
tering and systems It  then gives a thaough treatment of i n f i t e  
dimensionnl  rime  invariant continuous  time systems The  last section 
lists recent  scattering results whi&  might be of engineering  intexest. 

I.  INTRODUCTION 

V ERY ROUGHLY SPEAKING, a situation which re- 
quires infinitely  many parameters to specify will be 
modeled by a  system  with  infinite-dimensional state 

space. Very early  in the c o m e  of a design, one  restricts  atten- 
tion  to a  few  parameters which he believes are the  most im- 
portant. However, the resulting heavily proscribed  systems 
will still have infinite-dimensional state space. For example,  a 
variable coefficient  transmission  line  has an infinitely 
parameterized  space of capacitance, inductance, etc.,  distribu- 
tions  and  any system  corresponding to a  transmission  line will 
have infinitedimensional  state space. Even though  there are 
many ways to  discard all but a finite  number of design parame- 
ters such as to consider only cascades of a prescribed number 
of uniform lines or  to prescribe u priori the  tapering of the 
line, all such systems  still have infinite-dimensional state 
space. In this  same vein semiconductors  admit an infinite 
variety of doping intensities, of geometries, and of doping 
geometries and even the practical devices with heavily re- 
stricted geometries and doping patterns have an infinite-dimen- 
sional  space of states. This applies to an enormous  number of 
devices and  though  finite dimensional  systems  suffice as mod- 
els for basic circuits,  many  components of a modem circuit 
when modeled  carefully would be infinite dimensional.  From 
this  viewpoint, infinitedimensional engineering problems  pos- 
sibly outnumber  the intrinsically  finite-dimensional  ones. To 
reemphasize  this point we mention  that besides the  many  in- 
finite-dimensional  systems thought of more in connection with 
control (cf. [ 4 3 ] )  there  are transmission  lines, microwave cir- 
cuits, thin film devices, surface acoustic wave devices and  in- 
deed most  semiconductor devices. 

In fact,  there are so many examples of infinite-dimensional 
systems that  any  theory general enough  to deal  with  most of 
them would be too general to say much specific about  any  one 
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of them. Ideally,  a complete  theory would have several layers. 
There  should be a general theory giving the  structure  common 
to many  situations  and  then  there should be a  branched hier- 
archy of increasingly special conditions  and increasingly spe- 
cific theorems. Such an extensive theory will, of course, take 
a  long time  to develop. On the positive side the general theory 
of infinite-dimensional A ,  B ,  C, D-type linear  systems now 
seems reasonably complete and that is what  this  article pre- 
sents. We describe a  realistic setting  for  many infinite-dimen- 
sional  problems to which the main properties of general finite- 
dimensional  systems adapt suitably. 

Although the world abounds in important infinite- 
dimensional  systems, of what  benefit is a theory  about  them? 
Certainly the  abstract considerations to  be presented  here  are 
not of immediate  interest to  the practicing  engineer. However, 
they may ultimately be influential. For example, the  one 
problem common to most  infinite-dimensional design situa- 
tions is: How does one select a finitely parameterized approxi- 
mation and how does one  determine  its accuracy?  Problems 
of this type are mathematically speaking infinite dimensional 
and  one would have little  hope of developing a  decent theory 
of finite-dimensional approximations  without first having a 
good theory of infinite-dimensional  systems.  Hopefully the 
approach  taken here addresses that need and provides a foun- 
dation  for building the  more specialized layers of theory which 
will follow. Another  benefit of having an infinite-dimensional 
theory closely attuned  to a classical mathematical physics ap- 
proach (as this one is) is that developments  in that area can be 
adapted to (and encouraged by) engineering theory; some of 
Section IV and  the  entirety of Section V are examples. 
Whereas, it would be highly irresponsible to urge a  practicing 
engineer to learn the  abstract  theory described  herein it would 
be equally  foolish for  theoretical engineers to abandon such 
pursuits since a  unified and  thorough  understanding of 
infinite-dimensional  realizability  should  be valuable. 

Now that we have motivated  a study of infinite-dimensional 
systems, we  give some  idea of what the  theory entails and  how 
it  connects with other areas. The basic general principles 
which have emerged in  finite-dimensional  systems theory are 
the fact that  two ‘minimal’ systems  with the same frequency- 
response function  (FRF)  are isomorphic, every rational  func- 
tion is the  FRF  for some ‘minimal’ system,  and  the eigenvalues 
of the ‘state operator’  for a  minimal system give the pole loca- 
tions of the  FRF. During the early 1960’s, while this was de- 
veioping a mathematical  counterpart evolved independently. 
The  mathematical  theory  is  infinite dimensional and by com- 
bining it  with’the systems approach precise analogs of these 
basic theorems are now available in  infinite dimensions. Thus 
there has  been  a recent advance in systems theory  initiated by 
the discovery of existing mathematical work and greatly  expe- 
dited by its application. A surprising  fact is that  not only do 
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the  mathematical  works  provide  techniques  for  the  study  of 
systems,  the  works  themselves  are  reasonably  close to  being 
studies  of  systems,  For  example,  the  book  by Nagy and 
Foias [491, work  which was done  for  purely  mathematical rea- 
sons,  could be  viewed after  a  translation  of  terms  almost  en- 
tirely as a  treatise  on  infinitedimensional discrete-time  sys- 
tems. If the  results  and  methods of the  book are  restricted to  
finite  dimensions they agree  with the  standard engineering 
ones  for  the case of  ‘lossles:’ discrete  systems.  A  description 
of the  relationship  appears  in [ 281. 

The  work of Lax and Phillips though slightly less similar in 
form is more  similar in spirit to  systems  theory.  This is a 
theory of scattering,  which  includes  nonsymmetric  scatterers 
as opposed to  the radially symmetric  ones  concentrated  upon 
in classical physics. The original  work  compiled in [37]  treats 
lossless situations  while [38] gives a  lossy  scattering  theory. 
This  works  puts  great  emphasis  on  the ‘state operator,’  but in- 
put  and  output  operators never  appear  and  are  replaced  by  a 
more  general notion of “incoming  and  outgoing  space.” De- 
spite  these  differences the  author feels that Lax-Phillips scat- 
tering  and  infinite-dimensional  systems theory are  linked so 
closely in substance  and  spirit  that  future  development of 
these  subjects  should  go  hand in hand.  Section 111 is devoted 
to  describing the precise  relationship  between  the  two  sub- 
jects. An immediate  consequence is that  one can see  how 
systems  theory  looks in the  setting of  classical scattering,  how 
for example the classical objects of scattering, wave operators, 
and  scattering  operators,  compare to  objects  in  systems 
theory.  Quite possibly  these  more  established  objects will be 
easier to  use for  infinite  dimensions  than  controllability  and 
observability  operators. The  article  [281  connects Lax- 
Phillips scattering  with  systems in discrete  time;  while [3  11 
does  it  for  nonlinear  situations. 

Now we describe  some  history.  Among  mathematicians the 
first work in this  direction was done by  Livsic [441, 145 1 who 
began a  study of operators  on Hilbert  space  which  are not self- 
adjoint  in the early  1950’s, cf. [9] .  The  work of Lax and 
Phillips on  scattering  theory began in the early  1960’s. Also 
about  that  time DeBrange  and  Rovnyak  and Nagy and  Foias 
began a  study of “nonunitary”  operators which though similar 
t o  Livsic’s in general  philosophy was basically very much dif- 
ferent.  Another closely  related study was done  by  Helson.  In 
1964, Adamajan  and  Arov [ 21 showed the Lax-Phillips and 
Nagy-Foias  theories t o  be  equivalent.  In  1965, Livsic used his 
operator  theory to  derive  a type of systems  theory.  The  book 
received no  attention in this  country  until  connection of the 
above  mathematical  theories  with  systems was discovered  here 
abd  generated  enough  interest to  produce  a  translation [46] in 
1973.  The  first  work  on  infinite-dimensional  systems was 
done  in  control. In realizability the first  work was Balakrish- 
nan’s [6] in 1966 which  described the response function  for  a 
system  with  distributional  entries.  Little  happened  until re- 
cently  when the mathematical  theory was seen to  pertain; 
Dewilde [ l l ] ,  Fuhrmann [17]-[26],  andHelton  [27],  [28]. 
Also around  that  time  systems  theorists  Brockett and his stu- 
dent, Baras, became  interested in the  subject [ 51.  There was 
considerable  subsequent  work on  this [ 61, [ 121, [ 181, [ 19  1, 
[291,  [311,  [321  and  related  topics  [131,  [201-[261,  [301. 
In quite  a  different  spirit  there is the algebraic  approach taken 
by  Kamen [ 341 -[36] and the distribution  theoretic  approach 
of  Aubin and Bensoussan [ 31. More recent  Russian  work 
known to  the  author is the  book  [45] describing  new direc- 
tions  in  systems  theory. Also the  mathematician  Potopov  has 

devoted his time to design  of lumped  circuits  using  the  chain 
formalism  (cf. the survey [ 16]), and his colleague  Arov  has 
pursued infinitedimensional  problems [ 1 1.  

Amusingly  enough  a  major  problem  which  has troubled  the 
field since  completion of the earlier work  centers  on  deciding 
what  one  means by an  infinite  dimensional  system.  The  type 
of linear  system  treated  in  these  works  always  has  the  form 

d 
- x ( t )  = A x ( t )  + Bu(t)  
dt  

y ( t )  = Cx(t)  +Du(r)  

but  amusingly  enough it is not  at all clear what type of linear 
maps B and C should be. In fact  this has been  a  major  prob- 
lem troubling  the field since the  connection  between  systems 
and  operator  theory was discovered.  Fuhrmann and  Helton 
avoid the  problem by treating  mostly  discrete  time systems. 
In treating  the  continuous  time case  Dewilde  avoids B ,  C en- 
tirely  while  Baras  and  Brockett  choose  them in a  mathemati- 
cally convenient way which  eliminates  most  standard  exam- 
ples. Thus an essential task is to  find  a formulation  for 
continuous  time  systems which  contains  the  main  examples 
and to  which the basic finite dimensional  systems  facts extend 
in a  reasonable  fashion.  Ironically  enough the techniques for 
proving  these  facts  have (for  the  last  three ye in )  been  much 
clearer than  what  the  systems themselves  should  be. Even for 
studying discrete  time  systems  a slightly broader  set  up  than 
the  one  presently  used  might  be  desirable  since  it is necessary 
to  embrace  some  common  circumstances  (see  Section 11-B). 

The  major  accomplishment of this  paper is that  it gives a 
theory of continuous  time  systems which is physically realistic 
as well as being  complete at  the general level. The  theory also 
fits  together  perfectly  with Lax-Phillips scattering  which  guar- 
antees  that  it  contains  the physical situations  they have  stud- 
ied  and is consistent  with  their  long  experience in abstracting 
mathematics  from  physical  situations. 

We also mention  that  the  distributional  approach of 
Balakrishnan and  more  recently  Aubin  and  Bensoussan is very 
general  and  contains  many  physical  situations. The work  does 
not effectively introduce  a Hilbert  space structure  and  thus is 
more  abstract  than our approach. No isomorphism property 
or spectral  results exist for  distributional  systems  although  the 
author does not  know if these will come  from  additional work 
or if they  require  additional  Banach  or  Hilbert  space  structure. 
Our  treatment of systems  might  be  thought of as a  combined 
distributional  and  Hilbert  space  approach.  Hilbert  spaces usu- 
ally arise from energy or  cost considerations.  Energy  consider- 
ations play  a fundamental  role  in  mathematical physics which 
accounts  for  the  prominence  of Hilbert  space  there. 
Our notation is standard.  If H is a  Hilbert  space  and 

1 < p < 00, then LP(a,  b ,  H) denotes  functions h ( t )  with values 
in H so that $’ 11 h(t)llP  dt < O0. A  function inLz [-jm,jm, HI 
which is the  Fourier  transform of a  function  in L z  [O,m, HI 
has  an  analytic  continuation to  the right-half  plane  (RHP) of 
complex  numbers;  denote  the  space of these  functions by 
H2(H). The  corresponding  space  for the left-half plane  (LHP) 
is z2(H). The space of al l  infinitely  differentiable H valued 
functions  defined  on [a ,  b] and  vanishing  near a and b is de- 
noted CF(a, b,  H). If H and K are  Hilbert  spaces  QH, K )  de- 
notes  the space of all bounded  linear  operators  (ones  whose 
norm 
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is finite)  from H to K .  Note  a  linear operator is continuous if 
and  only if it is bounded.  The space of all uniformly bounded 
functions  on [a, b ]  with L(H, K )  values is Lm(u,  b ,  H ,  K )  while 
H"(H, K )  [resp. F ( H ,  K)]  denotes  those which have a uni- 
formly  bounded  analytic  continuation to  the RHP [resp. 
LHP] . A one  parameter semigroup G ( t )  of linear operators  on 
H will always satisfy  a  differential equation of the form 
d C(t)/dt = A G ( t )  on a  dense  subspace 9 ( A )  of H on which the 
linear operator A is def ied .  The converse also holds. A com- 
plete reference on  the  subject is [33] ,  an  introductory refer- 
ence is [ 561 and an intermediate reference is [ 151. A good 
general reference on  functional analysis is [ 5 5 1 .  

11. THE  SETUP 
A .  Continuous Time. 

For  our purposes  a  system [ A ,  B ,  C ,  D ] is defied by 

d*) = Ax(  t )  + Bu( t )  
dt  

y ( t )  = Cx( t )  + Du(t )  
where A ,   B ,  C ,  D ,  are  linear operators  and x ( t ) ,  u(t), and y ( t )  
are vector-valued functions. If the vector  spaces involved are 
not  finite dimensional, then precisely where the  operators B 
and C map  from  and to  is a  delicate matter. One naturally 
wants to specify them  in a  nice way but  it  turns  out  that  the 
simplest definitions  exclude  many  interesting examples. 

For  example,  one seemingly reasonable set  up would be to 
have Hilbert  spaces U, Y ,  X input,  output,  and  state spaces, 
respectively. The  operator A is densely  defined on X, and is 
the infinitesimal generator of a strongly  continuous semigroup 
eAt on X, the  operator B maps U t o  X and C maps X to Y. 
Despite the  natural  appearance of this structure  it is very 
*restrictive. As Baras and  Brockett [ 51 observe (see also [31) 
'the impulse  response function C 8 ' B u  applied to  input vector 
u is continuous  in t .  This property  does  not  hold even for loss- 
less transmission  lines; to cite  the simplest  example  a uniform 
transmission line with c = I = 1, unit  length,  and with one  end 
short-circuited  has  impulse  response equal  the dirac  delta 
6 ( t  - 2) when  treated  in  the  scattering formalism  (reference 
line c = I = 1). Thus a more  elaborate definition of system is 
required  in  order to avoid vacuousnw of the  theory. Before 
presenting our  definition of "system" we  give as an  example 
the  statespace description of a lossless transmission  line. This 
illustrates the difficulties just described and gives one some- 
thing  concrete to hold  onto during abstract discussions. The 
example is like  the  one  in [ 321. 

Consider  a  transmission line  with capacitance c(x), induc- 
tance I(x), nonvanishing and resistance d x ) ,  conductanceg(x) 
at  the  point x in [ 0, 1 1. The energy of a  current-voltage dis- 
tribution (i) in the line is 

and HE will denote  the Hilbert  space of all (i) with  finite 
energy. The  line is short-circuited at  x = 0. To  study this line 
we connect  the x = 1 end to a 'lossless reference  line having 
c = I = 1 and send signals down  it  toward x = 1. A signal mov- 
ing left [resp. right] is known to have a spatial  distribution  at 
each  instant of time 

Thus a signal entering  the transmission  line at x = 1 satisfies 

while one leaving satisfies 

this describes the  input  and  output to the line. The state-space 
equations  for this setup  are: 

' ( ' ) = A ( ; ) + B u  at 

Y = c(:) 

where A is the  unbounded  operator  on HE defined  by 

acting on domain 

finite  i(1) - 4 1 )  = 0 and 40) = 0 , } 
Ba = 6 ( x  - 1) (- :) a, and C k )  = 4 1 )  + i(1). 

As another example,  consider this same transmission  line in 
the impedance  formalism. The  input is then i(1) while the 
output is 41).  The state-space equations are again (2.1),  but 
this time 

B a = 6 ( x  - 1) (:)a, and C(i)= v(1). 

Let us make  an observation about  the examples; while A is 
an  unbounded  operator  on X as we expected, B is a  distribu- 
tion  and C is an  unbounded  operator.  Thus  the  situation is 
partly  operator  theoretic and partly  distributional. This type 
of behavior occurs frequently  and to deal  with it we shall use a 
"rigged Hilbert space."' Such  spaces should be familiar to fol- 
lowers of the Lions school; a  general  reference is [ 2 5 ] .  

If H and H1 are  two Hilbert spaces with H 3 H 1 ,  then a 
third Hilbert  space H' can be  defined as the set of all continu- 
ous linear functionals  on H 1 .  Since to each  x in H we may as- 
sign the linear function I on H1 defined  by I (y )  = ( y ,  x)  for 
all y in H 1 ,  the space H is regarded as being imbedded  in H'. 
If M is an  operator  on H whoce adjoint M* maps H1 into itself, 
thzn it induces an  operator M on H' according to  the  formulz 
[MI] ( y )  = I(M*y) for  each I E H' and y E H 1 .  The  operator M 

'An alterqative  and  equivalent  setting  involves bilinear forms on 
U X H , .  We could use this  formalism throuaout with  the  advantage 

ics (see [ 55, ch. 81) than  rigged  Hilbert  space. On the  other  hand,  the 
that  bilinear  forms are more  fashionable  in  current  mathematical  phys- 

rigged  Hilbert  space  seemed less encumbered. 
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is just  the  continuous  extension of M to H, because G l , ( y )  = 
(M*y, x) = ( y ,  M x )  = l ~ ~ ( y )  and so it will be denoted M. If B 
maps Hilbert space U into H', then  its adjoint maps H1 to U 
and is given by (u,  B*x) = [Bu ] (x). Likewise if C: H1 + U its 
adjoint sends U to H' and is given by [C*u]  (x) = (u ,  Cx).  Note 
B** = B and C** = C. 

Let X, U, Y be  Hilbert spaces. The closed operator A maps 
a  dense  subspace g ( A )  of X to X and generates  a  uniformly 
bounded  one parameter  semigroup denoted eAr .  The 
expression 

(1, Y)A = (x, Y )  + ( A x ,  AY) 

is meaningful for pairs of vectors x ,  y in 9 ( A )  and gives an in- 
ner product  on 9 ( A )  which  makes it a  Hilbert space. Let 
$(A) '  be the dual of 9 ( A )  and we have a rigged structure 
%(A)' 3 X 3 % ( A ) .  The same can be said for %(A*). Since A 
generates  a nice semigroup A* does, and this  implies that if 
A >  0 the map (A - A)*-' sends X continuously  into 9 (A*) 
with I1 IIA* topology. Thus (A - A)-' is well defined on 9 (A*)' 
and  for w in 9 (A*)' the linear functional [(A - A)-' w ]  (x) = 
w((A - A ) * - ' x )  is continuous in the X topology. By the Riesz 
representation  theorem  it equals ( x ,  wo) with Wn in X. In 
other words (A - A)-' w = w o  and so (A - A)-' 9 (A*)' C x. 
Also eAIt $(A*)  C 9 ( ~ * )  (cf. 115, ch. VI11 1.5, lemma  7(b)l 
and is uniformly [ - ] A :  bounded  and so eAr is defined on 
9(A*)' and is uniformly bounded  there. 

A system [ A ,  B ,  C, D l  will consist of maps, A as above, 
B :  U+$(A*) ' ,  C: !??(C)+ Y ,  and D: U+ Y where the  domain 
of C satisfies % ( A )  C 9(C) C D(A*)', the  operator B is con- 
tinuous,  and C is continuous  on % ( A )  in the ( ,  ) A  topology. 
A compatible  system satisfies ( z o l -  A)-'B C 9(C) for  some 
zo with  Re zo > 0. Most systems in  the author's  experience 
are compatible. 

Let us pause for a moment  to see what type of objects  one 
can have for  solutions x ( t ) ,   y ( t )  to the system equations. For- 
mally the  state x ( t )  arising from  input  function u ( t )  is 

x ( t )  = eArxo + B u(s) ds. I' (2.2) 

If x. E !??(A*)' and u ( t )  is a continuous U-valued function, 
then #'xo is in 9 (A*)', Bu(s) is a continuous 9 (A*)' valued 
function as is eA(t-S)Bu(s) and its integral is in 9 (A*)'; thus 
x ( t )  is a continuous  function  with values in !??(A*)'. So much 
for solutions to  the  state  equation. To obtain  outputs y ( t )  
from  the  states  one  needs to apply C to x ( t ) .  This for systems 
as we have defined them is impossible because of their  extreme 
generality: C simply cannot be  applied to an arbitrary element 
in 9 (A*)'. The  situation is not really so g r i m ,  for  set x .  = O 
and suppose that u(s) is differentiable. Then  integration by 
parts  in the  formula  for x ( t )  gives for  any zo with Re zo > 0 

The  integral is in % ( A )  C 9(C) and so, the only obstruction to 
having Cx(t) defined lines in  the last two terms.  These vanish 
whenever support u C (0, t )  and  as will be discussed later this 
insures that  the "Hankel" operator  for  the system exists. In 
most practical situations,  for  example, see the transmission 

line, X is a space of functions 3 (C) is a  subspace of fairly 
smooth  functions and Bu for each u in U is a  "rough func- 
tion." Moreover, the  operator ( A  - z0)-' is an integral  opera- 
tor which has  a smoothing effect and ( A  - zo)-'Bu will be 
smooth enough to lie in 9 (0. This guarantees that 
C(A - z0)-' Bu and C(A - z0)-'  e(A-zo)tBu exist and conse- 
quently  that  the  output y ( t )  = Cx(t )  + D u ( t )  is well de f i ed  at 
least for any  differentiable input  function u( t ) .  This is  the 
motivation behind the  definition of compatible system. 

There  are further  properties which  systems frequently have. 
These properties of systems have been  isolated  by Lax-Phillips 
as common  to all systems they  study. 

Meromorphic  property: 

The  operator valued function (zl- A)-' is mero- 
morphic  in  the whole complex plane @. 

A stronger  property is 

Compactness  property: 

There is a number T > 0 so that eTA (Zl- A I-' is a 
compact  operator  for Re z > 0. 

The A ,  B ,  C, 0 from  the transmission  line  example is a compat- 
ible  system having T = 0 compactness. Note, compactness is 
related to stability in that  any  asymptotically  stable system 
with  the compactness property is exponentially  stable. 

The basic objects  one uses to study a  system are  control- 
lability, observability, and  either  input-output, impuise- 
response, or frequency-response maps. In  this  context  they 
are defined as follows: 

The controllability  map e:  L' (U) + 9 (A*)' is 

eu = lm &'B u( t )   d t  

where u is the  function u ( t )  in L' (U). 

The observability  map 9 : L' (Y) + 9 ( A )  is 

qy = [Cdi ' ]  * y ( t )   d t .  

The  FRF is 

D + C(ZI - A)-' B 

for Re z > 0. 
The  later  object requires much  explanation. It is well dc  

Tied  for a compatible system. To check this  note 
C(zol  - A)- 'B is well defined  and since the  operator  on  the 
right-hand  side of the "resolvent identity" 

( z l -  /I)-' - ( z o l -  A ) -  = ( z o  - z )  (zol- A)-' (zl- A)--' 

(2.3) 

maps D (A*) into 9 ( A )  we can apply C from  the  left  and B 
from  the right to get  a natural  definition  of C(zl- A)- 'B.  The 
FRF is not necessarily defined  for an arbitrary  system. The 
FRF is, however, given in an intuitive sense up  to a constant 
by 

D + (zO - Z) C(z01- A)-' (zZ- A)- 'B.  (2.4) 

For  many purposes the  indeterminacy is unimportant. This is 



HELTON: SYSTEMS WITH INFINITE-DIMENSIONAL STATE SPACE 149 

because the Hankel operator  for a system plays a dominant 
role  in  realizability theory  and according to some  thought is 
about  the  only  thing  one usually measures anyway;  the Hankel 
operator  for a  system is determined by its  FRF  but is inde- 
pendent of any  constant  added to  the  FRF. 

Now we discuss Hankel operators. If F( j y )  takes values in 
oe(U, Y )  and is uniformly  bounded,  then  for u in H2( v) the 
function F( j y )   u ( j y )  is in L2(-", 00, Y )  and can be written 
uniquely as the sum a + b of functions a in H2(Y) and b in 
p( Y). Define  HankelF u 2 a. Note  that if F is constant,  then 
HankelF = 0 so two  functions differing by a constant have the 
same  Hankel operators. If the  function F given by (2.4)  is uni- 
formly  bounded  on RHP, then  the Hankel operator  for  the 
system is HankelF. Now let's look  at  HankelF  in  the  time 
domain. Suppose for  the  moment  that  the  Fourier  transform 
8 of F which  in general must be  regarded as a distribution &) 
1s in fact a well-behaved function.  Then  the  Fourier trans- 
formed Hankel operator x: L 2  [-", 0, U] + L 2 ( 0 ,  -, Y )  is 

[Xu] (s) = im E(t  + s) u(-'s) ds. 

If fi is a distribution  this  definition  extends  naturally to give a 
map X: c;(-=, 0, V) + ~ ~ ( 0 ,  m, Y ) .  The formally associ- 
ated with  a  system is 

[ x u ]  (s) = CeA('+')B u ( t )  dt 

which  rigorously is defined on CF[-m, 0, v) through integra- 
tion by parts 

[ x u ]  ( r )  = C ( A  - p)-2 e(A-P)('+')B - u ( t ) )   d t  
d2 

d t2  

(2.5 1 
and does not  require F to be uniformly  bounded. 

The  adjoint system to [ A ,  B,  C, Dl  is [A*, C*, B*, D*] . The 
controllability [resp. observability] maps for  the  adjoint  are 
the same as the observability [resp.  controllability] maps 
for  the original. Note  that 2 : 9 ( A )  + L 2 ( 0 ,  m, Y )  takes 
x E $ ( A )  into  the  function C p x  and similarly for e. Thus 

2*Cu = C&('+')B u(t )  d t  1- 
which up  to u(r)  + u(-r)  equals the Hankel Operator for  the 
system. 

While the  controllability  map sends L' (O ,m,  v) to 9 (A*)' 
integration by parts shows that  functions m CF(0, m, v) map 
into X .  If the  set of vectors so obtained is dense in X the sys- 
tem is called approximately  controllable or  often  just control- 
lable. If in  addition e is continuous  it  is called continuoudy 
controllable. If maps some subspace of L 2  onto all of X ,  
then  it  is exactly  controllable. By the  open mapping theorem 
a  pseudo inverse of any  continuously  exactly  control- 
lable  system is a bounded  operator. If R is a  subspace of 
L 2 ( 0 ,  m, v) for which  range CIR = range e ,  then  for  most pur- 
poses we can use CIR instead of e. We call such a  subspace 
controlling for e. Reachability is also used by some  authors 
instead of the  term  controllability.  Henceforth observability, 

exact  observability, etc. will be defined as above with 2 re- 
placing C .  A one parameter  semigroup eAr of operators  on X 
is called asymptotically  stable if eA'x + 0 for  each x in X. 

Remark 2.1. In the  defmition of system we assumed that A 
generated  a  uniformly bounded semigroup eAr. One could re- 
place this by the  assumption  that  the semigroup is bounded by 
ll&'ll Q ept with p > 0, since  a simple scale change A - p con- 
verts this to a  uniformly bounded semigroup. The  FRF  (at 
least (2.4)) will be  defined on  the half-plane Re z > p rather 
than  the RHP, and everything else works  with analogous modi- 
fication. In fact  the main  reason for  taking p = 0 was to avoid 
carrying the subscript p through  the whole paper. 

Remark 2.2. A more general but  natural definition of sys- 
tem is possible. Namely, the  operators A and D remain as is, 
the  operator B maps U into % (An*)', while C :  9 (Am) + Y .  
With this  definition  everything in  the section after a  straight- 
forward  modification  still goes through.  To make sense of 
most  formulas one simply  requires  what  in the  time domain 
amounts  to repeated integration by parts. For example, in 
(2.5)  just  integrate by parts n + m - 2 more times. 

B. Discrete  Time 
What is the  correct  notion of a  discrete-time system? Let us 

consider  a typical situation-discretizing the transmission line 
from  subsection a. The  method we choose is a usual one (cf. 
[ 10,  Appendix C] namely,  send  in pulses of duration T and 
read values or averages of the  output  at  time intervals of length 
T.  The  state propagation equation  for  the discrete version of 
(2 . l ) i s  

w(n + 1) = &v(n) + &(n) 
where A" = 8" and 

1 

B" = I eAq B dq .  

The  input,  output,  and  state space are  the same as before.  For 
each a(t) put  into  the  continuous  time system, the resulting 
state  at  time T is f eA(T-q)Ba(q)  dn and its energy and con- 
sequently 1 1  11; is no greater than .jT la(t)12 d t  the energy of 
a(t). If a(t) is a  pulse of height a, then  the  state is precisely 
h; thus B" is a bounded  operator. Since A is dissipative eA" 
has norm Q 1. Now we turn  to C. There are several reason- 
able ways to define  it.  A common  one is set 2; = C. Thp 2; is 
an  unbounded  operator  on HE. Another is to have E(:) give 
the average value of i - u over some small interval (0, 1). If T 
is small and 0 is chosen appropriately  this can be approximated 
in practice  by  taking  a  time average-of $1, t )  - u( 1, t )  over a 
sample  interval of length T .  Here C is a bounded  operator. 
The first method  though seemingly simple is incompatible 
with  energy  considerations, while the second is consistent with 
energy  considerations. 

The second type of discrete  system is treated in (281  and 
works of Fuhrmann.  The first can be  completely  analyzed 
using the same techniques  adapted  to a setting like we use in 
this  paper. 

111. LAX-PHILLIPS SCATTERING AND SYSTEMS 
A.  The  Lax-Phillips  Model 

This  section begins with  a  summary of Lax-Phillips structure 
adapted  somewhat to  our purposes. Chapter 1 of [37] is a 
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boon  to a  physical  understanding of this  formalism-rather 
dryly  presented here. 

Let U, Y ,  X be  Hilbert spaces. We define H to be the Hilbert 
space 

H = L 2 ( - = , 0 , U ) @ X @ L 2 ( 0 , = , Y )  

and T ( t )  to be a  strongly continuous uniformly bounded  one 
parameter semigroup of operators  on H which  describes  how 
information in H changes as time goes by. Let T- ( t )  [resp. 
y+(r)]  denote translation by t units  to  the right on L 2 ( - = ,  
0, v) [resp. L 2 ( 0 ,  w, Y ) ] .  Denote by S[-,,b] the subspace 
L 2 ( - a ,  0, U ) @ X @ L 2 ( 0 ,  b ,  Y )  of H ;  by S[X, the sub- 
space X @ L 2 ( 0 ,  -, Y ) ,  by s [ ~ ,  -] the subspace L -J (0, =, Y ) ,  
etc.  Let Pi-,, b] be  the  orthogonal projection onto S[-a, b l ,  
etc.  The semigroup T ( t )  has the following  properties. 

(i) T(t)g = T+(t)g on ~'(0, =, Y )  

(ii) For a > 0 define Z ( t )  = P[-,,,] T( t )P[ , ,  - 1 .  Then 

(iii) For a > 0 

T(r)*g = T-(t)*g on L'(-=, 0, v). 
Z ( t )  and Z( t )*  are asymptotically stable. 

The  number a is not critical  and  in  practice a is chosen in  an 
arbitrary fashion. The choice of a effects  the scattering matrix 
but in  a trivial fashion,  namely, S b ( z )  = e(b-4zS,(z).  

A further restriction [38, eq. (1.2)1 which all Lax-Phillips 
models satisfy is that of inertness: 

T+(t)S[o,-l = T(t)SIo,  -1 is orthogonal to range T(t)S[,,a 

T-(t)*S[-,, 0~ = T(rF S[--, 0~ is orthogonal to range 

An inert model  which satisfies (ii) and (iii) for a  particular 
a > 0 will satisfy them  for  any a > 0. We call the  setup  just 
described  a Lax-Phillips model (with reference a) .  

B.  Example 
The transmission  line  example fits nicely in the Lax-Phillips 

framework and in fact is the  type of situation which  motivated 
their  theory. By reading [37, ch. 11 one can see how to do 
this example  in the  form of Section 111-A. However, it is more 
instructive to do  a typical systems  example which is somewhat 
bizarre from  the Lax-Phillips viewpoint since this underscores 
what is  happening  in general. 

Consider a  rod of unit length and  temperature  distribution 
x(r ,  t )  which is fixed, x(0 ,  t )  = x(  1, r) = 0, at  the ends. There 
is one  heater  in  the  rod which upon receipt of input a supplies 
heat in  a smooth  distribution &(r), and  one measuring instru- 
ment which  reads off the  temperature  at r = 4. The associated 
system is 

A f  =- d 2 f  on 9 ( A )  
dx2 

INCONING I HEATER 

L 

TRANSNISSION 
L I N E  - HOT ROD 

ll OUTGO I NG 
I - 

TPANSNISSION 
L I N E  

TENPERATURE 
HEASURENENT 

PROVERBIAL 
BLACK BOX 

Fig. 1. 

Ba = ah(r)  

cx = x(+) 

D = 0. 
It is compatible and satisfies the compactness property. To 
fit the system into a Lax-Phillips model,  connect an infinitely 
long  transmission line to  the  heater and another  one io the 
measuring device. Energy is supplied to  the  heater  by sending 
an incoming  electric signal down  the  input wire, and  the mea- 
surement is converted into an outgoing  electric signal which 
travels out  the  output wire (see Fig. 1). The space of possible 
incoming  [resp. outgoing] signals is 

{ (-f) with f in L2 (-=, 0, R ') 1 
resp.{(:)withfinL2(0,-,R') 1 . 

Thus  the incoming and  outgoing spaces are naturally  identifi- 
able  withL2 spacesandXisL2(-=,0,R')@X@L2(0,=,R'). 
At a  particular time in the  operation of this  contraption a 
power signal will be  coming  in,  something will be going on in 
X, and  a  measurement signal will be going out, in other words, 
one would observe a  vector in X. Later t time  units  one 
would observe a  vector h'. The map sending h to h' defined on 
all X by this process is T ( t )  the  time  evolution semigroup. We 
could write it  down explicitly but  do  not  to avoid redundancy 
with the  next section  which gives a formula  for doing this in 
general. The Lax-Phillips model  here is  inert. Clearly any in- 
coming signal or  state when  propagated for t time  units  has  no 
influence on L2 [ t, =, R '), thus  the first condition  is satisfied. 
Intuitively the  condition says that  state  and incoming waves 
cannot have influence  in the  outgoing space which propagates 
faster  than  the prevailing signal speed. 

C. Getting a Lax-Phillips Model  from a System 
We just saw how a Lax-Phillips model  could  be  associated to 

one particular  system; now we show how to  do this in general. 
It is done  with an abstraction of the preceding construction 
which we call the  imbedding  construction. 

Proposition 3.1: If [ A ,   B ,  C, D ]  is a  system the  imbedding 
construction associates  with it a Lax-Phillips model with ar- 
bitrary reference if and  only if [ A ,  B ,  C, D ] 

(a) is continuously controllable and observable, 
(b) has uniformly  bounded FRF, 
(c)  has d" and Pr asymptotically stable. 

To describe the  imbedding  construction we need  definitions. 
Let x [ o ,  tl be the  function  on R' which equals 1 on the intet- 
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Val [ 0, t ]  and 0 off of that interval. Define R ,  : L 2 ( 0 ,  00, H )  +- 

L 2 ( 0 ,  00, H) by [ R r f ]  (r) = x [ ~ ,  rj(r)f(t - T)  and  denote by m 
the reversal operator  u(r) --f u(-r).  The space X in the Lax- 
Phillips model is obviously LZ(-=, 0, U )  @ X @ L 2 ( 0 ,  =, Y) 
and we must  define operators T(t)  on X. Since X is naturally 
decomposed into  three subspaces it is natural  to express T ( f )  
as an operator  entried 3 X 3 matrix: 

where P(t)  : L' (-00, 0, U )  + !i?(A *)' is defined  by 

and K ( t )  : $ ( A )  + L 2 ( 0 ,  =, Y) is 

K(t)x = R,C eArx = R,  a * x  

andp(t):L'(--,O, V ) + - L 2 ( 0 , = ,  Y)is 

Properties of the system  correspond to  properties  of T ( t )  
as follows: 

System Lax-Phillips model 

(a) + (b)  + eA ' uniformly bounded T(r) uniformly bounded 

no restriction  (i) 
(C) (ii) 
(a) + (4 (iii) 
no restriction  inertness 

as we now demonstrate. Since IlRtll = 1 = Ilmll, we have 
IIP(t)ll < IIeII and Ilu(t)ll < ( I  2*11 = 119 I I  for all t .  Conversely 
llRrfllLl --f l l f l l ~ l  as t +- +- and so max, I I K ( f ) I I  = 119 11. More- 
over Ut > range Rt is dense  in L 2  (0, =, V), so max, I I P ( t ) I I  = 
IICII. Since p(t) is Rr applied to  the  input-output map 
max, Ilp(t)ll equals the norm of the  input-output map  which 
in  turn equals maxRez > 0 IIS(z)II where S(z) is the  FRF. This 
establishes the equivalence surrounding boundedness. 

Lax-Phillips property (i) and inertness are built into  the 
c.onstruction. Property (ii) is the same as (c).  The second 
,.art of property (iii) says p f P x h  +P(t)P[-,,olh + 0 and 
3-(t) Pi--, 01h --f 0. The last convergence is automatic and 
the eAr convergence follows from (c). Let us treat P(t)u for 
fixed u in Lz [--, 0, VI. Suppose E >  0, pick N so that 
I I P [ - m , ~ ~  u l l ~ l  < e .  For r > N  

P(t)u = I" + 6 &(f-r)B u(-r) dr 

and  note  that  the second  integral is dominated  by IIClle. The 
f i s t  integral is P('-")x, where x = $: & ( N - r ) B u ( - r )  dr and 
so goes to  zero as t +- -. Thus  continuous  controllability plus 
(i) gives the second part of property (ii): the  first  part follows 
similarly from  continuous observability. 

We still must  show that T( t )  is a semigroup. Upon multi- 
p&ing T ( t )  T(w)  and  equating it to T(t + w )  we obtain  the 

following identities 

y+( t )K(W)  + K(t)Pw = K ( f  + W )  (3.2a) 

d'rp(w) + P ( t )  = P ( t  + w )  (3.2b) 

Y+( t )p (W)  K(t)P(w) p(t)  3 - ( W )  = P(t W )  ( 3 . 2 ~ )  

which we must verify. Lets check  1 ; its right side is 

y+( t )R,Cd" + R,Cd'('+ w ) .  

The first  term is C&(w- r +  'I, for t Q r Q w + c and 0 for all 
other r ,  while the second is Cd'('- + w, for 0 < r < t and so 
both  terms sum to C d ' ( f * w - r )  for O < r < t + w .  This is 
R t +  wCeA' as required in 1. The  adjoint of 2  has the same 
form as 1 and so it holds. Assume for  the  moment  that D = 0. 
The  left side of ( 3 . 2 ~ )  applied t o f i n  Cy(-- ,  0, U )  is 

3 + ( t ) R w C I r $ 1 ( r - h ) 8 f ( - A ) d X + R f C ~ r  0 

plus 

plus 

t - r  
CJ, e ~ ( r - h ) B f ( - X  - w )  dA, for r E 10, t l .  

A change of variables makes the last integral 

Jwr-r+w # ( r - r - k + w )  B f(-X) dX. 

This  plus the middle  integral is 

c I 1 + w - *  & ( t + w - r - A )  B f ( - X )  dX, for r E [0, t ]  

which added to the first integral extends  the  formula  to 
[ 0, t + w]. However, this is R,+ J', 8('- ' )B  f(-h) dX as 
required. To verify (c) when D is not 0, all we must do is 
check  that 3+(t)RwD  +.R,D 3Jw)  = R,+ wD,. The opera- 
tor D factors  out  to  the  left, m y-(w) = y+(w)*rn and so the 
problem reduces to verifying 

y + ( t ) R w   + R r 3 + ( w ) * = R t + w  

which is easy. 

variations.  One we shall use takes 
The imbedding construction can be  carried out  with  many 

;IC=LZ(-m,-Q,U)8X,dLZ(U,m,Y) 

with Q > 0; we call it the a-imbedding. 
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D. Getting a system from a Lax-Phillips model 
To a Lax-Phillips model for each number a > 0, we associate 

the compatible  system: 

A the infinitesimal  generator of the semigroup P[-,,,] 

Eu is the linear functional on 9 ( A * )  satisfying [ E u ]  (x) = 

Cx [P[o,,l l x ( a ) ,  for x in ii? (A) + S I I I , u ~ ~  which we call the 

TWP[-,, - 1 ,  

(u ,  [P[-,, 01x1 ( -a) ) ,  

emitted system. 

The first order of business is to clarify these defiitions. In 
particular we need to establish that E and C are defined for 
those x cited. After completing that we prove the  emitting 
and imbedding construction are inverse to each other. 

Proposition  3.2: The a-imbedding construction applied to 
the system emitted  at a from a Lax-Phillips model gives the 
original model  and conversely. 

To prove that E is well defined we need to show for x in 
9 ( A  *) the  function g 4 Pi-,, o l  x is right continuous at -a. Let 
P O ,  p-  be positive smooth  functions on [ - a ,  01 with po + p- = 
1 and p- 0 outside of [ -a ,  - a / 4 ] ,  The vector x is in ii?(d *) if 
and only if P[+, ,I [ (T( t )*  - I ) / t ] x  converges. Consider 

P[-,, ,I A ( t ) p - g  = P [ - u , n ~  ( A ( t ) p - ) g  +P[ - , ,a l  ( T - ( ~ ) * P - )  N t ) g  

where \(f) = [(T-(t)* - I ) / t l .  The first term converges to 
P[- , , , ]p -g .  Inertness  implies that P[-, , , ]  ( IT-(t)*p-)[T(t)* - 
I / t ]   P [ ~ , , l x  = 0 for small t ,  thus  the second term equals 
P[-,, ,I ( T - ( t ) * p - ) [  T(t)* - Z/t] x which converges since x E 
%(A*) .  We have shown that l imr+ .oP[ -a ,u lA( t )p -g  exists 
in L z  [ -a ,  0, Y ] .  In other words p - g  is differentiable in a 
certain sense. It is well known (and easy to prove, cf. [53, 
Theorem 1.1 51 ) that this type of differentiability implies 
p - g  is continuous.  Thus PI-,, o ~ x  is continuous near -a .  A 
similar argument holds  for x € %(A)  and suffices to show that 
C is well defined. 

Proof  of Proposition  3.2: The space Jc arising from  the 
a-variation on the imbedding construction  from  one system 
[ A ,  E ,  C ]  is ~ = L ' ( - = o ,  -a, U ) @ X , @ L z ( a ,  00, Y )  and we 
denote by Os, K,, and ps the  constituents of the semigroup 
T J t )  in this  model. The space in the original Lax-Phillips 
model can be identified with Jc in the  apparent way. (X, % 

L z  (-a, 0, U )  @ X @ L 2 ( 0 ,  a,  Y ) ,  etc.)  and the semigroup T( t )  
can be written as  a  3 X 3 matrix  with critical entries  denoted 
p, K ,  p. We shall show that p = Os, etc.; the main tool is 

Lemma 3.3: Suppose that Z is a  vector space and g(s) is a 
one  parameter semigroup of linear operators on Z .  If for each 
t ,  s 2 0 the map 6 ( t )  : Z + L 2  (O,m, Y )  satisfies 

T+(t)6(s) - G(t)g(s) = 6 ( t  + s )  (3.3) 

and if for each  futed z, t the L z  function 6 ( t ) z  satisfies 
lim, t b [ 6 ( t ) z ]  ( r )  = 0, then S(b)z is identically zero on [0, b].  

Proof: For fixed t ,  s the  function fT+(t) S(s) z is identically 
zero on [0, t )  and so on that interval 6 ( t  + s)z = -6(t)g(s)z.  
Thus 1-im, t [ 6 ( t  + s)z] ( r )  exists  and is 0; this  is  independent 
of s so the lemma follows. 

Consider 6 = K, - K ,  since both K ,  and K satisfy (3.2a), 
their difference 6 does also; note  (3.2a) is a special case of 
(3.3). For x in ii? ( A )  the lim, t b [K, (b)X]  ( r )  exists and is c x .  
To  complete  the proof we need  only  show that  this limit on 
K equals C because the result subsequently  follows from 
Lemma 3.3. To do  this  let po,  p+ be smooth  functions on 
IO, a ]  which satisfy po + p+ = 1 and po E 0 outside  of [O, 

a/2): Observe using inertness that K(t)[P[- , ,  X I  x + ,I x ]  
is orthogonal  to range T+(t + 0/2), in other words, it is identi- 
cally zero on [ t  +a/2 ,  - 1 .  Thus K(t )x  = ~ ( t ) p + P [ ~ , , ] x  on 
[ t + a/2, =o] and if x E $ ( A )  the argument used to imply  con- 
tinuity of x € 2 ( A * )  at -a implies here that p + P [ ~ , ~ l  x is a 
left continuous  function  at a .  Thus [K(f)X] ( T )  = [K(t)p+ * 
P [ o , a ~ ~ l ( ~ ) = R r ~ + ( r ) P [ o , ~ ~ x ) , , b u t l i m , t  t T+(t-r)PIo,.1x= 
[P[O,,]xl(a) = c x .  

Since p, 0, adjoint have the same basic form as K ,  K, the argu- 
ment above implies that p =  p,. Now we turn to p and p,. 
Their  difference 6 satisfies (3.3) with g(s) = T-(s). Inertness 
implies that  the  action of T( t )  on a function  in L z  (-00, -a ,  U )  
is not  felt in L z ( a ,  00, Y )  for 2u time  units; thus p ( t )  = 0 if 
t < 2.u. This is also true of ps( t ) .  Therefore, A(t )  = 0 for 
t < 2.u and  for a < t < 2u we have lim, f r A(t ) (r )  = 0. On the 
other hand,  inertness implies that 3+(t)*A(t) = 0 which to- 
gether with (3.3) gives A ( t )  = 3(t)*A(r + s). That is A(t + s) . 
( r  + s) = A ( t ) ( s ) ;  so lim, t t A(t)(r) is independent of t and  from 
the above  observation it is 0. 

At this  point, we mention  an  additional example. The trans- 
mission line example  effectively demonstrates  the system one 
would use to model  many typical one-dimensional scattering 
situations. While the  state  operator A varies with  the trans- 
mission line one is testing the  operators E and C do  not;  they 
are intrinsic to the reference line. For scattering  in odd dimen- 
sions the same is true and the  input-output  operators E and C 
can be written very explicitly by using directly  the  formulas 
of [ 38, sect. 71. Instead of writing out  the  setup  and  formulas 
explicitly we just give the recipe. Here U = Y = L z ( S " - ' )  
where S"-' = {(x1, * * * , X") : Ixl Iz  + - * + l x n f  = 1). To  de- 
fine Eu plug h(x  * w ,   w )  = 6-,(x - w ) u ( w )  into  (7.17).  To 
define C one evaluates j d  of (7.11)  at a ;  note (7.1 1) is given in 
terms of (7.8)  and (7.4). 

E. Finer Structure 

Now that we have shown  how systems theory  and scattering 
theory correspond it is natural to examine how basic objects 
such as the  FRF  the  controllability and  observability operators 
compare to basic objects in  scattering theory.  There  are  three 
such  objects in scattering: the scattering matrix,  the forward 
and the backward wave operators.  Since  systems correspond 
to Lax-Phillips models  and  any Lax-Phillips model has wave 
and  scattering operators these objects can be associated with 
any system. The bulk of this  section is devoted to comput- 
ing them explicitly for a  system; we find that  they are closely 
related to C, 0, and  the  FRF. In [281 this business was thor- 
oughly worked  out  for  the discrete-time case. 

Before beginning the  computation we mention  another di- 
rection. Certain functions called 'distorted  plane waves' play 
a fundamental role  in classical scattering theory.  Helton  and 
Ralston [32] showed that  for  the system [ A ,  E ,  C ]  naturally 
associated with the lossless transmission line (as  in Section I!) 
the state-space valued function (z - A)-' Eu[resp. (z - A)-' 
C*y] actually  equals the classical physics incoming  [resp. 
outgoing]  distorted plane wave. (Here u,  y must  be chosen  in 
a  certain basis.) The (z - d)-'E objects are used repeatedly 
in  studying systems and  the  author feels it is quite  interesting 
that  they correspond to such important  objects in  scattering 
theory.  It seems reasonable clear that  this  correspondence will 
carry to most  situations.  One  should be  justified  in  thinking 
of (z - A)-'&, etc., as a  superposition of distorted plane 
waves. 
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Now  we compute  the wave and  scattering operators  for a 
given system.  The basic philosophy  behind  scattering is to 
study a situation by  comparing it  to  one where nothing hap- 
pens,  a  free  situation. Given a Lax-Phillips model as in 
Section 111-A the  appropriate  free model  has evolution  opera- 
tor  denoted S( t )  which is the shift by t units  to  the right on 
L(-m, 00, U ) .  For  the sake of convenience we shall always 
take U =  Y which is no real restriction since the smaller space 
can be enlarged to give two equidimensional spaces which  are 
unitarily  equivalent. If the Lax-Phillips model  has  reference 
a,  then let be a  map of L Z ( - a ,  a ,  U )  into L Z ( - a ,  0, U )  @ X  @ 

Lz(O, a ,  U ) .  Let p denote  the map of L Z ( - m ,  m, U )  into JC 
which is the  identity  on L 2 ( - w ,  -a ,  U )  and L z ( a ,  QO, U )  and 
p" on L Z ( - a ,  (I, U) .  The backward wave operator is the map 
W- of L z  (-00, m, U )  to X defined  as 

This we now compute. Let [ A  1 ,  B1,  C1, 01 be the system 
whose Lax-Phillips model with reference Q is the free  system. 
Then T(t)p S( t )*  written in matrix  form is: 

: ). 
Pl(t)* Pl(t)* 5--(t)* 

As t goes to  infinity y+(t)*, K ( t ) ,  and & I f  go to zero  (in the 
strong  operator  topology [55, ch. 6, sect. 11.  Thus we see 
immediately that p has no effect on W-. Furthermore, since 
the Lax-Phillips model  for T ( t )  is inert we have p(t )  y-(t)*, 
P ( t ) -  3-(t)*, 3 - ( t ) p l ( t ) * ,  and y-( t )pl( t )*  equal zero. What 
remains is 

t + -  
0 

The main influence of Q is in the middle row of S( t )*  and we 
have seen that  this row  disappears  in the limit. The influence 
of Q on  the rest of the calculation is merely in adjusting ranges 
of integration. Such  bookkeeping merely confuses  otherwise 
illuminating  and  straightforward computations.  Therefore, 
we shall henceforth  take Q = 0. 

Now we compute  the  entries of the matrix. The  bottom 
right one is 

Above it we have 

Bg(f') d[  + D. The lower left  entry is 

P ( t ) p l ( t ) * g =  CR, B:P:('-'))C:R,g(r) dr.  

Upon  writing R, explicitly, making the change of variables 
t - r -+ f', and sending t +- we obtain P ( t ) p l  ( t )*g  -+ c /; * 

B:eA;(*-[)C:g(f') d t  which we abbreviate a:. Here s1  is 
the transfer operator  for [ A l ,  B1, C1, O,] . Finally, the  top 
comer  entry is 

Change variables twice,  namely t - s -+ 5 and  then t - h + q to 
obtain 

T h e l i m i t a s t + a i s 5 , S l * g .  
These expressions can be seen in  a very simple way because 

the  action of and 5 11 = 5 : are trivial. The  operator W -  
when written with  respect to  the basis 

LZ(-m, 0, U )  @LZ(O, m, U )  

-+L2(-=, 0, U )  $1 @LZ(O,=, Y )  

is 

w-=(! i). 

(: 3 

The classical forward  wave  operator makes no sense for  most 
lossy situations  but  natural generalizations lim, + 0 T(t)* * 
S(t)* = W +  or  its  adjoint W z  = lim, + s(t) T O )  do  make 
sense, cf. [ 291 or  [38].  The same procedure as above yields 
that W, in the basis Lz( -m ,  0, U )  @ L 2  (0, m, U )  + LZ(-=, 
0, U )  @X @L'(o, m, V )  is 

W + =  0 Q . 

The classical scattering operator is W,*W- and  from  our com- 
putations is 

(;*e 9). 
The entry  [Q*Cgl (Q = C I!.. eA6- ' )Bg(q )  dq while the  inte- 
gral expression for 5 has already  been given. When these are 
substituted  into  the  matrix  one finds that  the scattering  opera- 
tor is 

[I: C eACt-')B g(g) d t  + D g(f') . 

That is, the scattering operator is g. This  completes the com- 
putation of  wave and scattering  operators. 

1 
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Now we  give a  brief  scattering to systems dictionary. 

Herein  Lax-Phillips 

imaginary, jw axis 

Df 
D! 
3 ( t )  or Uo(t) 
3(-t) or uo(-t) 

X ,  TO), 20) = P 
''9 - 1 Pf" and P!+' 

translation  representation with 

real axis 
U = Y = N  

Iv. THE BASIC PROPERTIES OF SYSTEMS 
There are three basic theorems which  hold for  finite dimen- 

sional  systems: there is a  controllable and observable system 
with  a given FRF, two  such systems  are  equivalent in a  certain 
sense, every 'reasonable' function is the FRF for some system. 
These three  properties when suitably interpreted  hold  in 
infinite dimensions as is described in  the first three  parts of 
this section.  The  fourth  part shows that  for  meromorphic 
systems the poles of the FRF correspond to eigenvalues of A 
as a  consequence of Lax-Phillips theory. I t  also describes 
eigenvalue behavior for  another  natural class of systems. 
Throughout this  section we work only with continuously con- 
trollable  and  observable  systems. 

A.  Canonical Decomposition of a System 
We shall see that  iny system  can be 'cut down' to a  con- 

trollable observable one having the same Hankel operator  (or 
FRF if the original system is compatible). Here is the proce- 
dure.  Let X, = cl range c and X0 = cl range 9 for  the system 
[ A ,  E ,  C, D l .  Let X,- and Xb denote  the  orthogonal comple- 
ment of X, and X,, respectively. 

Now we describe how to restrict the  system [ A ,  E ,  C, Dl to 
X, and  obtain a  system [A , ,  E,, C,, D , ]  which acts  on X,. 
Since eAf X, C X,, its  restriction  to X, is a  semigroup and  con- 
sequently has an infinitesimal generator  denoted A ,  whose 
domain Y) ( A , )  is contained  in Y) ( A ) .  Set D ,  = D. The  operator 
C, is defined on Y) (C) n X, by C,x = Cx. The  operator C, is 
11 [la, continuous. B, is first  defined as a  linear functional  on 
projx, 9 ( A  *)by 

[Bcul ( w )  = [Bul ( w )  

and then  extended to w in ?(A:)  which is shown to be possi- 
ble by  the  next  two lemmas. 

Lemma 4.1: If u E U, there is a constant K(u), so that  the 
linear functional Eu satisfies 

I[Bul (w)l Q K ( u )  IIProjx, w l l ~  

for each w in Y) ( A  9. 
Proof: For p < 0 set x&) = C ( X [ ~ , ~ I  e-pf  u ) ;  then (x&), 

bounded semigroup range A * - p =X, see [33,  Theorem 
2.3.21. If  we set x = (A* - p l y ,  the integral  becomes [Eu] 
( { & * - P s  - I ) w ) .  Since P ) ~ W I I ~ ~  - to  we get lirn,,, . 
( x p ( s ) ,  x )  = - [Eu] ( w ) .  Thus x p ( s )  converges weakly to a 
vector x(=) which is in X, because each x p ( s )  is. We have the 
estimate I[Bu] ( w ) l <  Ilx(=)ll IIProjx, (A * - p)wll from which 
the  lemma follows. 

x > = $ ,  ' ( Be-"' u(t) ,  &*f x )  d t .  Since A* generates  a uniformly 

Lemma 4.2: Projx, 9 ( A * )  is  contained and is dense in 

Proof: Write dl*' as a 2 X 2 operator  entried  matrix  with 
respect to the  decomposition X, @X? of X, apply  it to a 
vector (g) in X, and  integrate 

%A:). 

It is straightforward to check that f ( x ,  s) is in D(A*) .  Clearly 
Projx- 9 ( A * )  C $(A:)  and so p ( x ,  s) P Projx, f ( x , s )  is in 
!D(A:). Since e x is norm  continuous  with limit x at t = 0, 
we get p ( x ,  s)/s -P x ,  moreover, if x E $(A,?) ,  then A: p ( x ,  s)/ 
s + A,?x. Thus p ( x ,  S)/S + X  in  the 1) l l ~ , *  topology. 

The first  lemma  guarantees that E ,  once defined on Projx, 
Y)(A*) is defined on a  dense  subspace of $(A *) while the 
second  says that E, has  a continuous extension to $(A:) .  

The various properties a  system  might have are preserved 
under his cut  down  operation. One  can check in  a straight- 
forward way that since eArXc C X,, the  operator ( z  - A,)-' 
equals ( z  - A)-' restricted to X,; moreover, (z  - A,)-' E ,  = 
( z  - A)-' E for Re z > 0. This is enough to show  that  the 
function C(z - A)-' (s - A)-' E ,  which determines  the Hankel 
operator  for  the original system  equals C,(z - A,)-' (s - 
A,)-* B,; thus  the  two Hankel operators are  equal. If the 
original system is compatible (z  - A)-'  E is contained  in $(C) 
as well as X,; thus  it is contained  in D(C,) = 9(C) n X, and 
the new system is compatible.  The  two FRF's are clearly the 
same. If an operator-valued function  is  meromorphic  or 
compact valued its  restriction to an invariant  subspace  also has 
these properties;  thus  the  meromorphic  and  compactness 
property  are preserved. 

The same type of process works with  observability  and 
projecting [ A ,  E ,  C, D l  down  to X,. One proof relies on  the 
fact  that Q is the  controllability map for  the  adjoint system 
[ A  *, C*, E * ,  D * ]  ; the preceding construction applies. Then 
one can take  adjoints to  obtain [ A  0 ,  CO, E o ,  Dl  , an observable 
system. If one combines these  two processes, one  gets  (by 
first  decomposing the system [ A ,  E ,  C, Dl into  controllable 
and  uncontrollable  parts and then decomposing these systems 
into obserable and unobservable parts). 

Theorem 4.3: There is a closed subspace X,, of the  state 
space X of a  system [ A ,  B ,  C, Dl so that  the  system [A,,,  
E,,, C,,, D] gotten  by restricting and projecting the original 
system to  X, (as described  above) is controllable  and observ- 
able and has the same  Hankel operator as the original systerk 
The system is compatible if the original one is and  the FRF is 
the same for  both.  The  meromorphic  and  compactness 
properties are ako preserved. 

Note: W e  E ,  and C, might  be  regarded  formally as 
restrictions  followed  by  projections A,, is defined  by the 
relationship = Projx,, d"tx,, and  this is not  the  same 
thing. 

E. Two  Systems  with  the  Same  ERE 
This  section describes the  extent to which  a system is 

determined  by  its Hankel operator  or if the system is compati- 
ble with  its FRF. First it is necessary to  discuss pseudo-inverses 
of an operator.  Suppose  that M is an  unbounded  operator  with 
domain 3 from  one Hilbert  space H1 to another H z ,  and 
suppose 63 is a  subspace of 3, which does  not  intersect  the null 
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space of M .  We define  the 63 pseudo-inverse of M ,  written 
M i ' ,  to be the  operator G with range equal to 61 so that GM 
(resp. M G )  is the  identity  operator  on 63 (resp. MG). The main 
theorem here is 

Theorem 4.4: Suppose  that two.co?trollable and observable 
systems [ A ,  B ,  C, D l  and [ A ,  B ,  C ,  Dl  have the same  Hankel 
operator. If the  two systems  are continuously  controllable  and 
observable, then  there  is a possibly unbounded closeable 
operator M with dense range such  that  the 'intertwining' 
equations 

M A = A M  M B = B  C M = C  D = D  

each hold  on a  dense set. One such  operator M is gotten 
explicitly  by 

~ = ( 9 ; ~ ) * 2 = & ; l  

defmed  on range C whenever -63 and 6: are controlling and 
observing spaces for e ,  and 2 , 2 ,  respectively. Note  that 

di= [ n u l l C = n u l l t I l a n d L =   [ n u l l 2   = n u l l  91' 
are one  set of spaces for which the  theorem applies. Clearly 
if both  systems  are  continuously  exactly controllable or 
observable, then M is bounded  and invertible. 

Proof: The  continuous  operator 9 * ehf  applied to u in 
Cr[O, -, U]  gives the  function C d l s e A r  1; eArB u ( t )  d t  of 
s. Since unlimited  integration  by  parts is possible, there is no 
problem  in interchanging operators  with  integration to get 
2 * eArC u(s) = (- 1)" Jt C dits"") (A - p)" B(ePr u(r) ) (")  d t .  
When [O,gl contains  the  support of u we may substitute 
c(f) = u(g - t )  for u then change variables and get 

Q* eArC C(s> = (- 1)" I ,"+s+r  eA(s+r+g-r) 

( A  - p)-" B(eP(g-') u(t))(")  d t .  

This is  just  the response of the system [ A ,  B ,  C ,  D l  to input 
ep(8-r )  u for values >g. Thus by hypothesis we have 

Q* @ r e  = g * , A r  e 
for u E Cr and  by  continuity it holds  for all  u E L 2  [ 0, 00, v] . 

From  this,  one gets if 6? and 6: are  controlling  and observing 
for e, and 9 ,  9, respectively, then 

(9-1 ~ ) 2  * e Ar  x -  - gr e-5-1 
$r x E range e.  By setting K = 0, we see that 

a x  

(C&l)* 9 * = (4.1) 

holds  on range = e a ,  regardless of which 6: and fl are used. 
Define M to be this operator  on range e. The  construction also 
works for  the  adjoint system  and  yields an  operator M+ de- 
f i e d  on range 4); the  two  operators satisfy ( M x ,  y )  = ( x ,  M'y) 
for x ,  y in their respective  domains. Thus M has a  densely 
de f i ed  adjoint  and by  159, ch. VII, sect.  2, Th. 31 is closable. 
Let SA = {oE g ( A )  :a=& for a uEC"(O,-, U) with 
t u i n  g(A)} .  Since any u in Cr(0, -, U) will produce  sucha 
vector, SA is dense. (even in  the I I  lh topology) in $ ( A ) n  
range : .likewise MSA is dense. By (4.1) the  map M takes SA 
into g ( A )  and so M as an  unbounded  operator  on I)(A) is 
closable. Likewise M* restricted to a dense subspace SA* of 
$ ( A * )  is closable, etc. 

From (4.1), we see that 
M eAr = eArM 

on range and  additionally 

MA =AM 

on S A .  Furthermore, M e  = e. Thus if u E U,  the  vectors 

I,' d ' f  Bu d t  4 b(u,  s), Pr Bu d t  4 b(u, s) 
S 

in range and e satisfyMb(u, s) = d(u, s). Now ( x ,  M u ,  s)) + 

[Bul ( x )  F d  (x, b(u,  s)) + [hul ( x )  and so [MBu] ( x )  = [Bu]  * 
( M * x )  = [Bu] ( x )  for x .in S A * .  To see that M intertwines C 
and C observe that C eAsMx = 2 *Mx = 2 *x = C eAsx for x E 
S A .  Set s equal to 0 to obtain  the result. 

The 'note' and last line of the  theorem are  straightforward 
to prove (cf. [ 28 p. 291 1. 

Remark 4.5: If the  two systems in Theorem 4.4 are  em- 
bedded  in  a Lax-Phillips model,  then T ( f )  and T ( t )  are  related 
by G T ( r )  = T ( t ) C  where C in matrix  form is 

C. System  Realizability 
This  subsection describes how to construct a  system 

with preassigned FRF. An operator-valued function F(z)  
analytic  on  the RHP is said to  converge to 0 in  the 
positive direction if lim, -,+* max yllF(x  +jy)ll is 0, it con- 
verges to F ,  if F ( z )  - F ,  converges to 0. The  function F is 
unitary  inner if F ( j y )  is a unitary  operator  for almost  all y .  
Note  that if F is analytic  on  Re z > p  and is the  FRF of a 
compatible  system C(z  - A ) - ' B ,  then  the modification A -+ 

A - p - E of the system  changes the region of analyticity  for 
FRF  to  the  RHP  or greater. Thus as far as the realizability 
problem is concerned we might as well assume that  the  (pro- 
spective) FRF is well behaved on  the RHP. 

Theorem 4.5: If F ( z )  is a uniformly  bounded 6:( U,  Y)-valued 
analytic  function  on  the RHP with a  limit F(-)  in the positive 
direction,  then  there is a compatible  continuously controllable, 
and observable system  satisfying Il@'II < 1 with F as its  FRF, 
which 

(i) is exactly  controllable  and observable if and  only if 
HankelF  has closed range. Note  such systems  are  always 
asymptotically  stable. 

(ii) has 8' and d" asymptotically  stable if F ( j y )  has 
either  the  form V ( j y )  G ( j y )  or G ( j y )  U ( j y )  where Uis 
a unitary  inner  function  on  the RHP and G is the 
boundary value of an analytic  and  uniformly  bounded 
function  in  the LHP. 

(iii) has controllability  and observability operators  with 
isometric  adjoints if F is unitary  inner. 

Proof: We begin informally and give an  intuitive idea of 
the  construction. Assume that F goes to zero in the positive 
direction. Let X ( t )  denote  the  shift by t units to the  left  on 
L2 (z-, -, Y). Its infinitesimal generator A" is dldx acting  on 
$ ( A ) =  { u E L 2 ( - - , = ,  Y): the derivative of u is in L 2 ( 0 ,  
m, Y)}. The  adjoint of A" is -d /dx acting  on  the  same  domain. 
The inverse Fourier  transform of Fu is not  in general a func- 
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tion,  but  it can be naturally  viewed as a  linear  functional on g(z*) = $ ( A ) ;  namely, if 3 dezotes  the  ordinary  Fourier 
transform  on L2 functions, set [Bul (f) =.E,, F(j[) Sf([) d [  
where f E g ( A * )  and B is the generalized  Fourier  transform  of 
F. Note  that  the  integral  exists because Sf( t ) / ( l  + [ [ I 2 )  is in 
L2(-m,  m, Y). A simple  estimate  (cf. [53,  Th.  7.251)  shows 
that  evey fun_ction in $@) is continuous,  thus we may de:ine 
a m a p C : $ ( A ) + Y b y C h = h ( O ) f o r h i n a ( & .   T h e i , B , e  
constitute  a  system. If the Fourier  transform of F were  a  con- 
tinuous  function,  then [ Z( t )FF]  (x) = 3F( t  + x) and so the 
impulse  response function ?eA' a u  = [SFu] ( t )  is 3F, as 
required. 

Now we turn to  a  procedure  which  works  in  general  and 
rigorously.  Everything is set in the  frequency  domain.  First 
Fourier  transform A ,  B ,  C: 

- 

* * - d  

3 - ' ( z -  & ) = z - j [  

m 

[S-' &I (g) = 1, SF(jC;)u g([) d [  

. r M  

while  this is a  system  it is not necessarily  compatible so we 
extend C to  be defined on g(C) = {g : R  --f YI 3-'g has finitely 
many  poles in the RHP  and  [3-'g(E) goes to zero  in the posi- 
tive direction}.  This  system  is  compatible  because 3-' ( z  - &-' & = ( z  - jt)-' F(j0 is in 39(C) and  its FRF is 

This is one  boundary of  integration  over  the  contour { z  : lzl = 
M, Re z > 0) U { z  : -M< z <M}. The  integral  over the 
circular boundary goes to  zero as M + m because F goes to  
zero in the positive direction.  Thus  the FRF equals the residue 
of the  contour  integral  at z .  In  other  words  it is F(z ) .  If F 
goes to  F, # 0 in the positive  direction  set D = F m .  T h e  
system A ,  B ,  C, D is compatible  and  has FRF equal to  F .  

The  system  may not  be  controllable  or observable in any 
sense. Now we remedy  that;  The  controllability  operator is 
for  each input  function u EL'(O,m, v) a n d f E  1)(A*) 

_ * *  

By the Plancherel theorem  the  formula  extends to  all f in 
L2( -= ,m,  Y) and u in L2( -m,  m, v). Thus  for  such u, the 
function F ( j [ )  [SUI([) is in L 2 ( - - ,  m, Y). By the closed 
graph theorem  the  system is continuously  controllable.  The 
observability  map  when  applied to  y in L 2 ( 0 , m ,  Y] is 2 y  = 

z(t) 6 ( x ) y ( t )  d t  which  says that 2 is the  identity  map. 
Since the  system is continuously  controllable  and  observable, 
Theorem  4.3  implies that  the  sptem A ,  B ,  C, D obtained  by 
restricting  and  projecting x, B ,  C, D t o  the closure of the range 
of the  Hankel  operator associated  with F is compatible  and 
has FRF equal to  F. 

By construction c = Hank+, so the  system [ A ,  B ,  C, Dl is 
exactly  controllable if and  only if range  HankelF is closed. As 
mentioned  near the end of Section  I  the  operator 9 * C m  is 
unitarily  equivalent to  HankelF.  Thus 119*xll > e  Ilxll; conse- 
quently, range 9 is  closed  and we  have exact  observability. 
Conversely, for  any  continuously  exactly  controllable  and 
observable  system 9 * c has  closed  range; thus,  the associated 
Hankel  operator  has closed  range. An argument  like that  in 
[28, Remark  4.21 demonstrates  that  continuous  exact  con- 
trollability  [resp.  observabilityl  forces 8' [resp. &'] t o  be 
asymptotically  stable. 

To prove (ii), suppose that  the  first  factorization  holds. 
Then range Hankelu 3 HankelF  and so if x belong  to  the range 
of the  latter it can be  written x = Hankeluw  for  some w in 
L2(-= ,  0, Y). Now E( t )*x  = Hankelug(t) where g(t) = 
PL'[--, 0, y] Z(f )*w.  Since g ( t )+  0 as t +m, we h a d  
E( t )*x  + 0, that is T ( t ) * x  + 0. Note T ( t ) x  = PL'(~, -, y) 
E ( f ) x  automatically  goes to  0. If the reverse factorization 
holds,  then  a  similar  argument  with the adjoint  system  proves 
stability. 

If F ( j [ )  is a  unitary  operator  then  it is straightforward to  
show that HankelF is a  partial  isometry. An argument  like 
that  on  [28,  p. 321 Finishes the  theorem. 

D. Poles  and  Eigenvalues 
When X is  finite  dimensional  the  poles of the FRF  for a  con- 

trollable  and  observable  system  are  located  at  the  eigenvalues 
of A ,  in other  words,  input  and  output  information  completely 
determine  the eigenvalues of A .  The  importance of  pole 
location  and of this  fact in fiiite dimensions is well known. 
For  infinitedimensional  situations  the  author is more familiar 
with  scattering  theoretic  implications  than  engineering  ones 
(possibly  because  of  background  and  possibly  because efforts 
in the first area  are more  advanced).  The eigenvalues  of A 
correspond to  modes  which  are  decaying  in  the  inside of 
the  system  and  thus poles  of the  scattering  matrix give informa- 
tion on this. In  different  cases  the  poles  have  different 
interpretations. Much of Section V is devoted to  describing 
this. 

When X is infinite  dimensional  the  pole to eigenvalue  cor- 
respondence is precise for  exactly  controllable  and  observable 
systems as we shall soon  demonstrate. However, in  the 
controllable  and  observable  case  (which is the most common) 
the  situation is murkier.  The  problem-is  that  two  systems  with 
the  same FRF have operatorsA  and A which  are  merely  inter- 
twined  by  a 1-1 densely  defined M having  dense  range. This 
is a  very .weak relationship  and it well  known that even wheri 
A and A are  bounded  operators no correspondence  between 
the  spectra of A and A can be inferred  (cf. [49, ch. VI, 
sect.  4.21).  Thus if a  system  had  spectrum in correspondence 
with pole location  one might be able to   f i id  an M so that  the 
equivalent  system  produced  would  have  completely .different 
spectrum. 
All of this pessimism is not justified,  because  as we shall see 

the  systems  which  come  up in practice  behave well. This is a 
consequence of the work  dating  back to  Moeller and  used for 
this  purpose by Lax-Phillips,  who  prove the following. 

Theorem 4.7: A compatible  continuously  controllable  and 
observable  system with  the  meromorphic  property  has a FRF 
whose  poles  are  located  exactly at  the eigenvalues of A .  
Proof: This is a  rephrasing  of [38, Th. 5.51  applied t o  the 

Lax-Phillips model in which the  system is imbedded  (see 
Section 111-C). 
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To  apply  their  [38,  Th. 5.51, we require in addition  to 
the  meromorphic  property a hypothesis  on 'incoming and 
outgoing  vectors'.  Actually an  immediate consequence of this 
additional  hypothesis [38, Lemma  5.31  suffices. In systems 
theory language, it says that if x is an eigenvector of A [resp. 
A * ] ,  then Cx # 0 [resp. B*x # 01. The  statement  about C is 
a  weaker requirement  then observability, while the  one  on B 
follows from  controllability.  The conclusion of their  theorem 
says that  the poles of the  s-matrix are located  at precisely the 
eigenvalues of A .  The FRF for a  system is just  the  s-matrix of 
the Lax-Phillips model in which it is imbedded and so 
Theorem 4.7 follows. 

A compatible  meromorphic system  has  a meromorphic  FRF. 
A more general class of FRF is mathematically reasonable to 
consider,  namely, the pseudomerornorphic F(z )  which  are 
q o s e  having a factorization F ( j y )  = G ( j y )   V ( j y )  or equiva- 
fently V1 ( j y )   G 1   ( j y )  with  the G's analytically continuable to 
a bounded  function  analytic  in  the LHP and  the V's unitary 
inner  on  the RHP. These  occurred  in Theorem 4.6, part 
b. When U and Y are  finite  dimensional another  definition of 
pseudomeromorphic is possible [ 131.  There is a function 
H ( z )  meromorphic and of bounded  type  in  the LHP so that 
lim,,o H ( x  + j y )  = F ( j y )  exists  for  almost all y .  Thus F is 
meromorphic  except  on  the jy-axis  where it could have bad 
discontinuities. It is in  these  finitedimensional circumstances 
where pseudomeromorphic  FRF's  are particularly interesting 
since they  turn  out  to  be precisely those  function  for which 
there is any  correspondence  between  properties of A and 
properties of the  FRF. Thus they are the  biggest class o f  
functions  that  one  would  probably  want  to use in connection 
with classical A ,  B ,  C ,  D type  systems  theory. This point  is 
well illustrated  by the  type of system  described in  Section IV-A 
s t t e n  by  restricting the  shift to a  certain  subspace.  Such  a 
restricted  shift  system, as Fuhrmann calls it, has  a structure 
which can  be immediately analyzed by  standard  mathematical 
theory arising from Moeller's theorem  I261,  [371,  [491. 

Theorem 4.8: The singularities of a pseudomeromorphic 
FRF  for a  restricted shift system with U and Y finite  dimen- 
sional are  equal precisely to  the  spectrum of A .  The  spectrum 
of A with  Re z < 0 consists of isolated eigenvalues. 

If the  FRF  is  not  pseudomeromorphic,  then  the  spectrum of 

Proof: It suffices to work  on  the  unit disk rather  than  the 
RHP since a standard  transformation (Caley) connects  the  two. 
If F is a unitary  inner  function  then  the  theorem is essentially 
Moeller's theorem  (cf.  [37,  ch.  3,  sect. 31 or [49,  ch. VI, 
xh. 4.1 I )  and so our proof consists of reducing Theorem 
$3 to  the  unitary  inner case. Suppose  that F is pseudo- 
meromorphic.  Then range  HankelF is a  subspace of H 2 ( Y )  
whose orthogonal  complement 7 is invariant under multiplica- 
tion by z .  By the Lax-Beurling theorem  there is an 'inner' 
function W such  that 7 = WHz ( Y ) .  The  pseudomeromorphic 
property forces W to have V as a factor  and so W is unitary 
inner;  this is equivalent to F being pseudomeromorphic.  Set 
G(eie)  = W(eie)   *F(e ie) .  Observe if f i s  any  function  in H2(U), 
then Ff E 7' + pz(Y) and so W*Ff is in H2(Y). This  forces 
G to belong to H"(U, Y ) .  We have F = WG where  by construc- 
tion cl range HankelF = range Hankelw. This latter  property 
implies that  there is no  nonconstant  inner  function W1 which 
divides both W* and G from  the  left, i.e., W I K  = W* and 
W I L  = G for some analytic K and L .  By construction eAr is 
just  the shift restricted to HankelF = Hankelw.  The Moeller 
theorem says that  the  spectrum of A behaves precisely as 

d"= ( 2  : (21 < 1). 

required by  the  theorem  but  with W replacing F .  Thus  it 
remains to show that  the singularities of W equal  those of F.  
Clearly any singularity of F is a  singularity of W. Note that in 
the  nonpseudomeromorphic case W is not unitary inner  and 
a  refined version of the Moeller theorem gives the last state- 
ment in the  theorem. 

Now we show that every singularity of W is also a  singularity 
of F.  Obviously it will depend heavily on  the  fact  that W-' 
and G have no  common  (left)  factor which  could cause the 
cancelation of a  singularity.  This  indivisibility property has 
the geometric inteIpretation  that  thesum S of the subspaces 
W-'?(Y) and G H 2 ( U )  is dense inHZ(Y), because C I S  being 
(backwards) translation invariant  can by  the Lax-Beurling 
theorem be written cl S = 8 2  ( Y )  for 8 a  conjugate an_alytic 
inner  function. Since S contains  both W-' H z (  Y )  and GHZ ( V )  
the  function 8 divides both W-' and G from-the left and, 
therefore, 0 = constant  or equivalently cl S = H2 ( y ) .  Since 
S consists of vector functions  of  the  form 

n = W - ' c + G d  (4.2) 

where c E H Z ( U )  and d € H 2 ( Y )  the space 61& { c + F d }  is 
dense in 61' 4 Wgz(Y). We shall show that this can happen 
only if W has no more singularities than F.  

For  the sake of a clear presentation  let us do  the dim Y = 1 
case first;  then W and G are scalar valued. Let us suppose that 
W has a  singularity at zo  while F does not.  Note  that since the 
singularity  set for F is a closed subset of { z : ( z (  2 l}, zo is at 
some positive distance from  any singularity of F and so F is 
uniformly bounded  in some region about zo .  A classical 
factorization  theorem  due to Buerling (see [26]) implies that 
w = m * p where both m and p are inner, m has  no singularity 
in common  with F and p is bounded in  a neighborhood of z o .  
Since W-'F is in Hz(@) and m and F have no  common 
singularities p-' F is in Hz@. Thus  from  (4.2) every rnn is in 
H z ( @ )  which is impossible since the n are  dense and m is a 
nonconstant  function  in  Hz(@). 

After  setting things up  properly  this same type of reasoning 
will apply to  the dim Y = K > 1 case. Suppose  there is a zo as 
before. Then  there will be  some entry, say w of the  matrix 
function W which is singular at zo . The  functions w ' 1  factor as 
before into mlpl. Now 

is contained in 

which implies that  for an entry f i r  o f F  the  function m;'m;' 
* * * mi'p;' . * p k ' f l l  is in B2(Q) and consequently p;' * * * 

p k ' f l l  is in p(Q). Since 61; is dense in 611, one has w11 = 
n p l  E clR ;. However, this  forces m l  p i '  * . * p i '  to be in 
p(Q)  which is impossible, since m l  is singular at zo and the 
p;' cannot cancel this  singularity. The proof is complete. 

As an aside it might  be  informative to observe how  Theorem 
4.7  follows from Theorem 4.8  for U,  Y finite dimensional 
(and otherwise  with slightly more work).  Let [ A ,  B ,  C, Dl  
satisfy the  hypothesis of Theorem 4.7; with FRF  denoted F.  
Let A arise from the restricted shift. realization of F. By 
Section IV-B, there is M with A M   = M A .  Since the restricted 
shift system is exactly  controllable  the inverse of its  control- 



158 PROCEEDINGS OF THE IEEE,  JANUARY 1976 

lability operator and therefore M is a bounded  operator  (by 
the  formula  for M). If A x  = k, then AMx = XMx so X isan 
eigenvalue of A .  Thus every pole of F is an eigenvalue of A .  
The reverse direction  follows  in an elementary fashion from 
( z  - A)-’ meromorphic  together with the (X - A )  w = 0 * 
Cw f 0 and (x - A *) w’  = 0 *B*w‘ = 0 property. 

The subsection  concludes  with  some  historical  remarks.  A 
correspondence between  the  spectrum of A and  poles of the 
FRF was widely observed once  the  connection between sys- 
tems  theory and the  work of Lax-Phillips, Nagy-Foias, Helson, 
etc. was understood  and provided many new techniques, [ 121, 
[ 181, [ 271.  The first thorough  presentation  for  the  non- 
boundary singularities is [ 121 . The pseudomeromorphic func- 
tions were studied first by mathematicians [ 141. An equiva- 
lent  notion called ‘roomy’ was introduced  independently by 
Dewilde who asserted strongly that  they were the  proper class 
for  the  study of systems [ 111. He also asserted that certain 
‘roomy’ functions were appropriate  for  the electrical design 
technique called Darlington  synthesis. In [ 13 ] the equivalence 
of ‘roomy’  with [ 141 was established  and they were shown to 
be precisely the class for which  Darlington  synthesis is appro- 
priate;  the result was independently  done in Russia by Arov 
[ 1 I . Meanwhile Fuhrmann in his work on systems theory de- 
voted quite a bit of attention  to  pseudomeromorphic  functions 
[22] ,   [23] .  In  particular  he  concentrated  on a subclass of 
functions which are precisely those which can be the  FRF of 
an exactly  controllable and observable system. It was ob- 
served by Clark and Helton [28, Th. 3c.l plus  Remark 
3c.21 that in the scalar discrete-time case this class has  a very 
nice characterization  and Fuhrmann  extend  this to the multi- 
variable and  certain real time cases [ 191 , [ 2  1 I .  In  the author’s 
opinion  the  next necessary step  in  this  direction  to  fiid lossy 
exactly  controllable and observable systems  which arise 
physically. 

v. MISCELLANEOUS RESULTS  IN  SCATTERING THEQRY 
This section has  a different spirit than  the rest of the paper 

and is not related to systems per se. It lists  some  qualitative 
results obtained  in  scattering  theory over the last five years. 
The  hope is that  this will benefit engineers primarily by sug- 
gesting structure which they did not know. Most surely the 
results as they  stand will not apply without modification to 
someone’s particular problem. However, practically all of the 
results  are  flexible  and nobody  knows  their  ultimate generality. 
The mathematicians involved have not  bothered to do rela- 
tively straightforward  generalizations because motivation was 
lacking. Thus if a  particular fact listed  herein catches a  readers 
fancy he is urged to consult  the  source article for a precise 
statement of the result  and if the  context  in  that article is not 
quite right he should not dispair  since the result will probably 
hold  in  many physically reasonable contexts. We emphasize 
that  the listing here is not  intended to be  complete  (or precise) 
and  concentrates  on  work  done primarily  by  people  in the 
Lax-Phillips branch of scattering  theory. 

We begin by  describing the  commonly  studied  situations. 
Thereisobsrucle scattering for  the wave equation in 1 ,3 ,  5 ,  . * 

dimensions. Here one has an obstacle and  bounces waves off 
of the obstacle usually in order to determine  its shape. (Di- 
mensions 2,4, e - - are highly anomalous, see [41 I ,  and will not 
be discussed here.) Variable coefficient  scattering usually 
treats an equation 

u n = L u  = u ( x ) V   . A ( x ) V u  - b ( x ) u  (5.1) 

Fig. 2. 

where all coefficients  are smooth and  nonnegative-A(x) is a 
positive definite matrix-and we assume Lu = Au, for Ix I > R .  
The objective is to  study  the coefficients  in terms of the scat; 
tering  matrix.  The  onedimensional case includes the losslesd 
transmission  line, e.g., b = 0, u = (l/c), A 1/2. Very recently 
rudimentary Lax-Phillips scattering has  been  applied to sound 
impinging on an obstacle with a ‘springy’ elastic  surface [8]. 
In  one dimension this  corresponds to a singly infinite  constant 
coefficient transmission line  connected to a  circuit  with one 
resister, capacitor  and  inductor  at  the  finite end. We reiterate 
that  many of the results  which  follow  deal with  or  extend 
easily to mixtures of the first and second situation  (the  third 
has not been studied  yet).  In  fact  for  many purposes an ob- 
stacle  problem  can  be thought of as a  limit of a variable coef- 
ficient  problem as appropriate coefficients  get infiiitely large. 
Also many of the results will most likely have an analog for 
lossy situations.  The  preoccupation  with losslessness derives 
from  the  fact  that  in classical physics most phenomena are 
energy conserving; a  general ‘lossy’ scattering theory did not 
emerge until  1973  [381.  Another  point is that  although  the 
one dimensional case will be emphasized through  the expos: 
tion  this is entirely  for concreteness.  Practically all structure 
is greatly  simpler for dimension one  than  for higher  dimen- 
sions. Thus  it is regarded as trivial and frequently ignored  in 
the  works to be described;  three-dimensional structure, how- 
ever, is a good guide to behavior in all odd dimensions. 

One general class of results  concerns  how close poles of a 
scattering matrix can come to the imaginary axis. 

1) According to Beale [ 7 ] ,  suppose  that a  sequence of ob- 
stacles 0, gets closer and closer to enclosing a region R (see 
Fig. 2) and  that  the Laplacian on R with  zero  boundary  con- 
ditions has eigenvalues e 1 ,  ez , * * * . Then each  corresponding 
scattering matrix s,(z) has a  sequence of poles p : ,   p : ,  * * * 

such  that p i  + j e&. This  result will almost  surely apply to tha 
variable coefficient case, say for example to a  transmissioh 
line withvariable capacitance having a  huge well. Very  crudely 
speaking it describes an effect  that  pockets of very high signal 
speed have on poles near  the imaginary axis. 

2) For which situations  does  the scattering matrix have all 
of its poles in  Re z < -6 < 0 for  some 6? A stronger  question 
for the corres  onding  system is when is eAr  exponentially 
stable, i.e., 11 < e-“? Before  describing general theorems, 
we list some special cases where exponential  stability  holds: 
when the obstacle is starlike (any  point inside the obstacle 
can be joined to the origin with a  line  lying  inside the  obstacle), 
when  the variable coefficients  restricted to any  ray through 
the origin decrease with distance from  the origin. The principle 
behind this can  be thought of in terms of geometrical optics. 
There are high frequency  solutions of (5.1)  with b = 0 which 
can  be  thought of as propagating along rays-called bichar- 
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acteristic curves of L .  They are the rigorous version of  ‘light 
rays’ and  bend  according to  the laws which govern light  rays 
going through a changing medium.  For  the general variable 
coefficient case one has exponential decay provided that  any 
bicharacteristic  curve leaves any  finite region in  a finite  amount 
of time, [ 37,  Appendix  21, [41].  This bicharacteristic  condi- 
tion also implies [401  that  the poles of s(z) are in the region 

R e z < - ( a + b l o g I z I )  

for  some a > 0. In dimension one rays can never be trapped  in 
a finite region and so one always has exponential  decay.  For 
the obstacle case one fixes  a sphere  around  the obstacle 52, 
draws a  line to the  obstacle,  optically reflects it, follows it to 
the obstacle  again, optically reflects it,  etc.  until  the ray 
crosses the  sphere  (on  its way out).  Let I be the  length of the 

which you  take to be 00 if the  path requires  infinitely 
many reflections. Let L(n) be the maximum of all lengths I 
possibly obtained this  way. The  conjecture (137, p. 155)l is 
that  (a) if L(52) < m, then e A t  decays exponentially,  (b) if 
L(52) = 00, then I( eAr  11 = 1 for all t .  In other words one sus- 
pects  the same  principle is behind both  the variable coefficient 
and the obstacle case. A  main difficulty with :he present state 
of the art is that rays hitting  the obstacle  tangentially can pro- 
duce some  incredible mathematical  pathology. Ralston [SO] 
verified (b) while (a) has been  proved for a large class of ob- 
stacles, most recently 1471,  [581. 

If the  operator e A t  is a compact  operator  for t sufficiently 
large, then e A r  is exponentially  stable  ([37, Cor. 5.11).  This 
stronger compactness condition is frequently satisfied, for ex- 
ample, if the obstacle is convex 1481 or if the bicharacteristic 
condition  holds [ 53 ] . 

Another class of results describes how close poles  get to the 
?rigin. Given p > 0 there exists  a region N in the complex 
plane containing  the interval [ -n /p ,  n / p ]  so that  the  scattering 
matrix  for  any obstacle  which is contained in the  sphere  about 
the origin of radius p has no poles  in N ;  see [ 421 . 

A third class of results  concerns how  the scattering matrix 
changes when the coefficients  are  changed.  This type of work 
goes under  the heading of ‘sensitivity analysis’ in engineering 
literature. 

1)  Suppose  the obstacle is starlike  or  that a andA decrease 
monotonically  on rays through  the origin. Then as a decreases 
and A increases the poles of s(z) which  are located  on  the real 
axis slide out  the real axis. Obstacle case [37]-[42] ;variable 
coefficient case [ 501. 

2) An eigenvalue of s( jw)  equals e ’6k(w) where 6 k  takes 
l3al values and is called the phase shift. If the obstacle  in- 
creases in size, or if A ,  a, and b/a increase, then 6k(w) in- 
creases. Also under starlikeness  and  radial monotonicity 
assumptions as above, the derivative (d /dw)  6k(w) is positive. 
For  the singly infinite transmission  line (open-  or short-cir- 
cuited  finite  end) this  says that  for  fiied frequency input  the 
phase of the  output is shifted by an  amount which increases 
when the capacitance or  inductance of the line decreases. The 
last fact is classical physics, the first two  facts are in I 321 . 

Quite a different  topic is that of controllability  and observ- 
ability.  It has recently  come of interest to mathematicians  in 
this group. Majda [46]  studied observability of the system 
which arises (in  the same way as the transmission  line  Section 
11) from  scattering  for  (5.1)  with A = l/a  in  the  extension of 
an obstacle 52 with  boundary  conditions &/an +?(x) ut + 
(N = 0 on the  boundary 252 of the obstacle. He proves when 
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A is constant near a52 then if ?(x) never equals 1 on a52, the 
system is observable. In  the one-dimensional case this says 
that if the transmission  line  in Section I1 is terminated in resis- 
tance R and has  coefficients constrained as above (more  than 
necessary), then  the system associated to  it in  Section I1 is not 
observable if and  only if R is the characteristic  impedance of 
the line. 
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Invariant Subspace  Methods in Linear 
Multivariable=Distributed Systems and Lumped- 

Distributed  Network Synthesis 

Abstmct-Linea multivariable-dhiuted systems and synthesis 
problems for  lumpeddistributed  networks are analyzed. The methods 
used center around  the invariant subspace theory of Helson-Lax and 
the theory of vectorial  Hardy functions. State-space and transfer func- 
tion models are  studied and  their relations  analyzed. We single out a 
class of systems and  networks  with nonrational transfer functions 
(scattering matrices), for which several of the well-known results for 
lumped  systems and  networks  are generalized. In particular  we develop 
the relations  between singuhrities of transfer functions  and ‘‘natural 
modes” of the systems, a degree theory for inf~tedimensional  linear 
systems and a  synthesis via lossless embedding of the scattering matrix. 
FinaUy coprime factorizations  for this class of  systems are  developed 
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These factorizations play an essential role in the development and show 
that properties of Hardy functions are of  fundamental importance for 
this class of  distributed systems as properties of rational functions s e  
for lumped systems. 

INTRODUCTION 

IF REQUENCY DOMAIN methods in hmped-multivariable 
systems have been  developed in the last few years for  the 
analysis and design of control systems [ 1 1 .  These 

methods provided a clear understanding of the  interrelations 
between  statespace  and  transfer  function models for systems 
and networks  and proved to be extremely useful  in  practical 
design applications [ 821. 

Recently, several researchers, Baras [2]  -[8],  Brockett [31- 
[4],  Dewilde [9]-[16],  Fuhrmann  f171-[23], Helton [24] 
and [25],  have been investigating a similar approach t o  the 
analysis and synthesis of distributed systems  and networks. 
This theory applies to  situations where  energy  considerations 
provide the  setting of a  Hilbert space for  the  state space of the 
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Comments on “Systems with Infinite-Dimensionai REFERENCES 

State Space: The Hilbert  Space  Approach” [ 11 R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman 
Lectures on Physics, vol. 111. Reading, PA: Addison-Wesley, 1965. 

[ 2 ]  J. B. Keller and D. W. McLaughlin, “The Feynman integral,” 
Amer.  Math.  Monthly, vol. 82, pp. 451-465, May 1975. 

Professor Helton has written a very interesting expository paper’ on 
131 H. J. White  and S. Tauber, Systems Analy&, Philadelphia: W. B. 

the applications of Hilbert space techniques to systems having infiite- 
Saunders, 1969. 

dimensional state spaces. I find it, however, to be rather surprising 
that auantum mechanics.  which is the best example in all mathematical Reply2 by J. W. Helfon 

JAMES A. DYER 

physik of the applications of Hilbext space t&hniques to the study 
of infiitedimensional systems, is not mentioned. 

Not only does quantum mechanics provide excellent examples of 
infiitedimensional systems, the language currently used by many 
physicists to describe a quantum system is the same as that used by a 
systems engineer to descriie an engineering  system from the  state 
viewpoint. To illustrate this, consider a singleparticle quantum m e  
chanical system.  Such a system is completely descri-bed by a probabil- 
ity amplitude function 6 (x, y ,  z, f ) .  For fixed r, ( f  ) = (x, y ,  z, I )  is 

L2(R3).  For fmed r, this function is usually  called the state of the 
required to be an element of the unit sphere of the Hilbert space 

system even by physicists. The propagation in time of the  state is given 
by Schriidinger’s equation 

@ (0) = eo 
where i = fi, h is (2n)‘l times Planck’s constant, and X known as 
the Hamiltonian operator, is a self-ad‘oint unbounded linear operator 
defined on a dense subspace of Lz(R ). It will be observed that this 
equation has the form of the usual state propagation equation of linear 
systems theory. It will be observed from this equation also that 
quantum mechanics concerns itself only with zero-input solutions. The 
quantities which a systems engineer  would  call outputs of this system 
would  be called observables by a quantum physicist. An observable y 
of a singleparticle system is related to the state of the system by the 
equation 

1 

Y = (e, I: e) 
where (, ) denotes the inner product on L2(R3)  and L is a linear self- 
adjoint unbounded operator defmed on a dense subspace  of L2(R3). 
For example, if K is the Hamiltonian operator then the observable 
E = (e, K I$) is the energy of the system. Again, one finds here a 
standard type of output equation for a system  having an infinite- 
dimensional state space and a onedimensional output. An excenent 
elementary introduction to quantum mechanics from the  state view- 
pointisgivenin [ l ] .  
In the Feynman integral approach to quantum mechanics one also 

makes use of the concept of state transition operator. Here one writes 
the  state @(f)  as 

OD-- 

@ ( t ) = L L L  
K(t, a,?, 2) ~$0 (a,?, 2) dady”d2,  

where J( is an Lz valued function known as the propagator. In fact x is the impuk response of the quantum system and is the solution to 
~chriidinger’s equation for the initial state eo e,?, 9)  = 6 (X - 2) . 
6 (y -9)  6 (z - 2). Since  Schrddinger’s equation does not have a 
Green’s function in the usual mathematical sense, x is determined as 
the value of an abstract integral known as a Feynman integral. An 
elementary introduction to this approach to quantum theory is given 

The  reason for  the parallelism between the usual formulations of 
quantum mechanics and the present formulations of systems theory 
is that both subjects have a common parent in classical Hamiltonian 
mechanics.  These origins are discussed in detail in [3] ,  part 11. Since 
both systems theory and quantum mechanics  have followed inde- 
pendent but approximately parallel paths since their origins it is pos- 

beneficial to both. 
able  that cross-fertilization between the two subjects could prove 

in [2]. 
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‘J. W. Helton, Roc. B E E ,  vol. 64, pp. 145-160, Jan. 1976. 
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It is  pleasing to hear that my article seemed natural enough to be 
termed expository, since sections II, III, and IV were  new.  Professor 
Dyer  gives a nice discussion of how basic quantum mechanics itself can 
be described as an infinitedimensional system. Quantum mechanics 
was indeed not mentioned in the paper and so here are some comments 
on the scattering theory aspects of it. 

The  paper introduces a particular definition of infinitedimensional 
A ,  B,  C, D-type linear systems and in Section 111 proves that  it is 
equivalent to Lax-PWips scattering. Now their theory contains 
quantum mechanical scattering, although the examples they empha- 
size are classical. This correspondence is explained in Chapter VI, 
Section 4, of their book. Roughly, to a Schrodinger equation scatter- 
ing problem with s-matrix S there is  associated a scattering problem 
for a wave equation with scattering matrix r. m e n  S(Z) = r (&I. 
Functions with branch cuts are not pseudomeromorphic in the sense 
of Section IV-D of the paper and so S(z) is not pseudomeromorphic. 
Also note  that most results d e m i  in  the exposition, Section V, hold 
not only for classical but for quantum mechanical scattering. We 
should emphasize that when we  say quantum mechanical scattering 
we automatically mean  very special input and output operators B, C 
and so these comments do not address many systems based on 
Schrodinger’s equation. 

’Manuscript  received A ri l7 ,  1976. ’ J. W. Helton is with tge Department of Mathematics,  University of 
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Comments on ‘‘Geometric progression Ladder RC Networks” 
L. GRUNER 

A k t m t - I t  is ahown that a large class of nonrecunent RC Wer 
networks including, as a special case, the geometric ladder networks 
discussed by Bha-uyya and S w m y  a n  be represented as an 
equivalent RCG ladder network. 

Bhattacharyya and Swamy’s [ l]  conjecture that other nonrecurrent 
ladder networks may be represented in terms of recurrent ladder net- 
works is readily answered with reference to the author’s  earlier publica- 
tions [ 21 -[ 31. 

The application of  Kirchhoff‘s law to the nth node of the ladder net- 
work of Fig. 1 shows that the voltage V(n)  satisfies the difference 
equation 

(1) 

where for a nonrecurrent RC network the series impedance Z(n) = R ( n )  
and the shunt admittance Y(n) = sC(n). 

In the special case  of a recurrent ladder network, Z ( n )  and Y(n) are 
invariant with respect to n; in particular, if Z ( n )  = R ,  and Y(n) = 
Gu + sC,, then replacing V(n)  by V,(n), the solution of the difference 
equation (1) is  given  by 
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