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Operators with a representation as multiplication
by x on a Sobolev space

H. HELTON

I shall speak on a structure theorem for a certain class of non selfadjoint op-
erators based on the representation of such operators as multiplication by X onatype
of Sobolev space.

Let T be abounded operator on a Hilbert space and set V(s) = eLST

If we define the operator-valued entire function R(s) = V(3 YV(s)=¢€ (sTXetsT -

=2 A,s",then Tis self adjoint if and only if R(s)= 1 and hence it seems

n=0
reasonable to classify operators by the behavior of R(s) .In particular, a class of op-
erators which seems nearly as natural and amenable to study as the self-adjoint operators
is the operators T for which R (s) isa polynomial in s , that is

N
(POL) R(s) = V(5)*V(s) =2 A,s".
n=0
Under certain additional hypotheses, it will be proved that such operators have a repre-
sentation as multiplication by x on a type of Sobolev space.
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The type of Sobolev space we need is this. Let M= < j> .bea
matrix of (M+1)2 measures on the interval {a, b] and define a bilinear form ( , )f"
on C*[a,b] by

b
M
(REP) (£,9), = 2 Sf(3’§‘i’d,4--
: F L.j:Oa, Y

dJ

where hj(x) = ; ho LI (, )P' is positive definite we let H (F.) stand for

X
the completion of C®[a,b] in {1, = V(£,§),, . We will say that H(p) has
order M | K a

The object of this talk will be to sketch a proof of

Theorem. If T satisfies POL,if T hasa cyclic vector, and if T has spec-
trum [o.,b] , then there is a space H (@) and a unitary map U.: H—»H(,a.) such
that WT W= g5 multiplication by x on H( ,4 ).

Before we begin the proof of this theorem, we make a few remarks. First
of all, the theorem is much weaker than what can be proved, but for the sake of clear
exposition we postpone a description of its generalizations to the end of this talk.
Secondly, it is easy to prove that the degree N of the polynomial R(s) is even.
Undoubtedly the space H ( M) can be chosen to have order N /2 . I have a heuristic
proof for this. Lastly the POL condition can be expressed in more concerte terms.
Namely, POL is equivalent to the condition [T *-T] IN+13_ g , where [A-8]t"3

M -K -K
is defined to be the operator Z ( K ) (-1) M AK B ™ . To check the equiv-
K=0
alence of the two conditions note that for any bounded operator

P T .
d eLST AeLST=_Le tsT [T*A—AT]eLST

ds
and hence
N+1 _{sT* | . LeT* N+1 . sT
__d__ tsT eLST _ (—L)N+1GLST C-r (I)QLS
dg N+1
where CT is the map of L(H), the set of all bounded operators on H , into £(H)
N+1
defined by C;(A)= T*A-AT . The POL condition is equivalent to 7 R(s) =0
ds

N+1
and consequently to C.~ (I) = 0 . A straightforward computation (cf. proof of
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Theorem 2.2 [1]) shows that [T*—T][m = (—1)MC¢(I) ;

Now we sketch a proof of the representation theorem based on distribution
theory. Recall (cf. Chapter 1 and 2 of H6rm ander [2]) that $(R") is the space of
infinitely differentiable functions on R" which along with their derivatives decrease
faster than any polynomial at infinity. Frequently we shall use 4 to denote J( RY.
The POL condition guarantees that || eiSTI = 0(lsIV) and thus T hasa c"
functional calculus (cf. Colojoard and Foiag [1] for a discussion of such operators).

Define u$ by
1) Uy = — ﬁ(z)e“”dz

2K -oo

forany ¢ J ,where ;E denotes the Fourier transform of § . This is a slight
modification of the usual construction of a C" functional calculus for T . The
integral is norm convergent since the function §{ isin g ,and U $ has the usual

properties

@ Ugg = Uprlly and Ugg= Uty
One can show that
isT .

®) e Upiyy = Upisxgny and TUpey = Uyt -

Let ¥, be a cyclic vector for T . Define a bilinear form [, Jon ' by
[{—;g] = (u{’\yo ) ug\YO) -
The next few paragraphs will be devoted to proving that [, ] has the form (,)
given in REP. After this is accomplished we will show that the map V: -3 defined
by
V§ = UV

induces a map V, from H(m)nY into a dense subspace of H . The extension of
V; to H(P‘) will be the map U~ required by our theorem.

The Schwartz Nuclear Theorem (cf. Theorem 2.1 of Streater and
Wightman [4]) implies that there is a continuous linear functional (distribution) on
¥ ( R?2) such that
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@) LEWFWYN =f,q].
The POL condition says that
' N+1 : ;
d [etsx{:(x),etsxg(m] -0
dsN+1

forany £,9 ¢ or equivalently
d N+1

S

Thus
N+1 _
L(x-91" fnrgey =0
and since linear combinations of functions of the form ED) g(y) are dense in $(R?),
2(Cx-yI"* hi,y)) = 0

for any function h ¢ $(R?2) . This implies that if k is in $(R2) and has a zero of
order N+1 on E={(x,y)¢R2: x=y},then L(k)=0.

Now we need a change of variables
Y-y —> T xX+y — 0.

Any function h in $(R?) has a finite Taylor expansion

& finite

J .

h(e,p) = > aj h(0,B)td+y(T,p),
. J=0 2T

where the remainder term y(t,8) has a zero of order N+1 in T at ©=0.Hence
£ (y) = 0% and thus we can obtain

N j
() Lhie,p) = 2 4:(2= ho,p))
j=0 * 97!

where each /Cj is a distribution on  ¥(R") . Now any distribution s on $(R7)
has a representation (Schwartz Kernel Theorem, sec. 2.3 Shilov [3] or equation 2-11
[4]) of the form

* Technically y isnotin $(R2) , however a standard argument involving cutoff
functions makes this proof of equation (5) rigorous.
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€3]

K oo
s(H) = 2 | by (X2 (L) dx
£=O-—OO

for some continuous functions by wich grow at worst like a polynomial at infinity.
If we put together the two representations above and note that

) 119 3 4 4
- ) = — = - — = —m - !
atm(x)n(g ley™ 7 22 ay]m(x)n(g)lhg (N0 - m(x)n’(x)
we get

M oo

- S S Wy, =)
L9y = CLJ'(X){ (x)g > (xydx
L,j:o —0

for f,9 ¢ 4 . We must restrict the interval of integration to [a,b] and in order to
do this we need the following lemmas:

Lemmal. If fe$ and §=0 ina neighborhood of ¢(T) , then
U = 0. Moreover, the norm closure ® of P= {p(T) : p is a polynomial } is
equal to the norm closure S of S = {ug: fe $3.

- _Proof. First we show that P contains S . Since for each s the oper-
ator e“ST isin P and since the integral in (1) is norm convergent, P contains
each operator U ¢ and thus contains S .

N It is easy to see from properties (2) and (3)of U that the Gelfand map
of P into the continuous functions on its maximal ideal space maps Ug into £ .
Thus Uy is an invertible operator if and only if § is an invertible function on the
maximal ideal space of P that is, on &(T). Now suppose that § is a function in
¢ which is zero on a neighborhood 6 (T) . There is certainly some function h in
¢ which is invertible on 6 (T) and which is O on the support of f.Thus UgUy=
=W th= 0 and U £ = 0 . The first half of Lemma I has been proved.

Now we show that ® — S . This is very easy forif p isa polynomial
and the function h in § is never zero in a neighborhood of 6(T), then p(T) =
=[U 'hT" Uhp and so p(T). is the product of two operators in S . This con-
cludes the proof of Lemma I.

Lemma IL If (T) =[a,b) where a + b , we have that if { € 9 and
f=0 onla,b] then u\(= 0.

Proof. Suppose that { =0 on [a, b ] . Define %t by
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. f(x) w=b
{ =
0 X =<b
f(x) L= aQ
+—=

0 -

+
Since & # b both ¥ and f~ arein ¢ . The functions fht defined by f_(x)=
= 1":7- (x¥1/n) convergeto §% inthe ¥ norm because

k
Lim le d [?i(l)—fi(x11/h)]l=

n—o0 dxk

. k _
= lim 1|t ddxk [$x) —{t(x+1/n)]/1/h‘=0.

n-—»oo

Since -Fni = 0 on a neighborhood of [a,b], the operators W et areall 0.
n

However, U ¢ is a continuous map of ¥ into L(H) and hence U $t =0. There-
fore U‘{ = l,l‘u. +u+._ =0.

At this point let us remark that if o = b , then Lemma II fails to be true.
For example, if T is an operator whose square is zero, then the spectrum of T s
{O}and u{ defined by (1) for T is equal to zero if and only if §(0) = 0 and
f'oy=o0.

We had shown, several paragraphs ago, that the distribution £ on #(R?)
with property (4) has support on E . Lemma I above implies further that £ has
support on the set E@(T)= {(¢,x)eE: €6(T)}. Now under the simplifying
assumption that 6'(T) is an interval [a ,b] it is easy to show (with the help of the
fact that any distribution with support at a point is a linear combination of derivatives
of the dirac 5-function) that the representation REP holds for the form [, ] .

Now we conclude the proof of the representation theorem. Define
Vi ¥ — H by

Since v, is cyclic for T , Lemma I implies that the orbit of Yo under S is dense
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in H , and hence V maps onto a dense subspace of H . By Lemma II we may de-
fine a map V. of C®[a,b] into H by

Veg = Vg
where g is a function in C*(a,b] and § is any extension of g which belongs
to J . From the statement that [, ] has a representation ( , ) B which was prove
above we can conclude that

(f,g),‘. =(V .+, V. 9) .

The bilinear form (, )ﬂ- must be positive since (, ) is positive. Moreover, it is posi-
tive definite since (§, f),,_ =0 implies that V,.f=0, which implies that U tYo=V{=0
which implies that U¢U 4y = O forany g . This in turn implies that U¢= 0,
which (by the proof of Lemma 1) implies that =0 on ¢(T). Thus C=la,b] can
be completed in () y Ju to produce a space H(C ). Naturally V. extends to an iso-
metry V from H('L) onto H.If {eCm[a b), then VTV~ f(X)=VTV A0 =
=VTug= Vl,l % =xf(x). The equation VTV~ 1£(x) = x{(x) extends by continu-
ity to any fe H( 'L) This completes the proof of the representation theorem.

The above theorem can be generalized considerably. In fact most of its
hypotheses can be dropped an still a strong conclusion holds. Firstly, we can replace
the assumption that T has a cyclic vector W, with the assumption that T hasa
finite cyclic set {% IO \{/n} . In this case we study the bilinear form [ ¢, gl =
= (\lﬁ\{/.ﬁ o us_n\yn, Ug1\y1 +-+ Ug yp) where F and G are C™ n-vector
valued functions with components F= (£,,-,§,) and G=(g4,---,9,). Under the
POL assumption this bilinear form will have a representation which is the natural gen-
eralization of REP to vector valued functions. Note that the form [ R 7 in this vector
valued case must be positive but not necessarily positive definite. Secondly, suppose
that T4»..., Ty is a commuting family each operator of which satisfies POL. We then
are forced to consider functions § not of one variable but of k variables and to
build a functional calculus '

T 4o +LT
j{:(Z‘lv 7Zk)ef 1Z1 . kzud\gdz] .
\/_fc_ R 1 k
The bilinear form [, J on $(R¥) defined by

[f.9) = (UgWo, Ugyp)
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will have a representation which is the natural generalization of REP to R* . Thirdly,
the operator T need not be bounded. All that we really need to consider is a one
parameter group of operators V/(s) which satisfies the POL condition. If we modify
the cyclic vector assumption property, then REP holds with b =co ,a= ~o0 and V(s)
maps into multiplication by e'S* . Fourthly, the three generalizations above can be
put together to give the following theorem:

Theorem. Suppose that
a) V4(s) ,---,V(s) are commuting one parameter groups of operators each of which
satisfies the POL condition
and ‘
b) there are n -vectors W42 W Such that the orbit of the subspace spanned by
them under the algebra generated by V1( $)y-, V) (8) is dense in H .

Construct a map $(R¥)— £(H) by

_ A 'S L[y Tyee y T, ]
uf—\/z—ﬁ-k ék{:(z»])---)Zk)e ™ k'k dz1dz

Define [, ] by
[F.G] =(u\t1w1+...+u\cn\yn, u91w1+---+ugh\vn) for (f4,...,%,)

K

and G=(9,,---,9,) n-vector valued functions with components fi.9; in FRY).
Then [, ) has a representation

) no T olel ‘ 5!Bl _
[F;G] = Z Z—- I fb(x)—ax—p- g)(x)d/u'olﬁb‘)

181, lui<M ©,j=0 gk Ox

k 2% ol«!
where M o i are measures on R¥ and where stands for — <%
J ox*
for each K tuple x = (o(,l y---, 0Ly ) Of positive integers. Here |« | = T

Furthermore, Vj(s) acting on H corresponds to multiplication by

LSX;
e on the space of  n -vector valued functions with components in $(R k) .
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