COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 5. HILBERT SPACE OPERATORS, TIHANY (HUNGARY), 1970

Operators with a representation as multiplication by x on a Sobolev space

H. HELTON

I shall speak on a structure theorem for a certain class of non selfadjoint operators based on the representation of such operators as multiplication by x on a type of Sobolev space.

Let \top be a bounded operator on a Hilbert space and set $\forall (s) = e^{isT}$. If we define the operator-valued entire function $R(s) = \forall (\bar{s})^* \forall (s) = e^{-isT^*} e^{isT} =$

 $= \sum_{n=0}^{\infty} A_n s^n$, then T is self adjoint if and only if R(s) = 1 and hence it seems reasonable to classify operators by the behavior of R(s). In particular, a class of operators which seems nearly as natural and amenable to study as the self-adjoint operators is the operators T for which R(s) is a polynomial in s, that is

(POL)
$$R(s) = V(\bar{s})^* V(s) = \sum_{n=0}^{N} A_n s^n$$
.

Under certain additional hypotheses, it will be proved that such operators have a representation as multiplication by x on a type of Sobolev space.

The type of Sobolev space we need is this. Let $\mu = \langle \mu_{ij} \rangle$ be a matrix of $(M+1)^2$ measures on the interval [a, b] and define a bilinear form (,), on $C^{\infty}[a,b]$ by

(REP)
$$(f,g)_{\mu} = \sum_{i,j=0}^{M} \int_{a}^{b} f^{(j)} \bar{g}^{(j)} d\mu_{ij}$$

where $h^{J}(x) = \frac{d^{\sigma}}{dx^{J}} h(x)$. If (,) μ is positive definite we let $H(\mu)$ stand for the completion of $C^{\infty}[\alpha, b]$ in $||f||_{\mu} = \sqrt{(f, f)_{\mu}}$. We will say that $H(\mu)$ has order M.

The object of this talk will be to sketch a proof of

Theorem. If \top satisfies POL, if \top has a cyclic vector, and if \top has spectrum $[\alpha, b]$, then there is a space $H(\mu)$ and a unitary map $U: H \rightarrow H(\mu)$ such that $U \top U^{-1}$ is multiplication by χ on $H(\mu)$.

Before we begin the proof of this theorem, we make a few remarks. First of all, the theorem is much weaker than what can be proved, but for the sake of clear exposition we postpone a description of its generalizations to the end of this talk. Secondly, it is easy to prove that the degree N of the polynomial R(s) is even. Undoubtedly the space $H(\mu)$ can be chosen to have order N/2. I have a heuristic proof for this. Lastly the POL condition can be expressed in more concerte terms. Namely, POL is equivalent to the condition $[T^*-T]^{[N+1]} = 0$, where $[A-B]^{[M]}$ is defined to be the operator $\sum_{K=0}^{M} {M \choose K} {(-1)}^{M-K} A^K B^{M-K}$. To check the equivalence of the two conditions note that for any bounded operator

$$\frac{d}{ds} e^{-isT^*}Ae^{isT} = -ie^{-isT^*}[T^*A - AT]e^{isT}$$

and hence

$$\frac{d^{N+1}}{ds^{N+1}} e^{-isT*} e^{isT} = (-i)^{N+1} e^{isT*} C_T^{N+1} (I) e^{isT}$$

where C_{T} is the map of $\mathcal{L}(H)$, the set of all bounded operators on H, into $\mathcal{L}(H)$ defined by $C_{T}(A) = T^*A - AT$. The POL condition is equivalent to $\frac{d^{N+1}}{ds^{N+1}} R(s) = 0$ and consequently to $C_{T}^{N+1}(I) = 0$. A straightforward computation (cf. proof of Theorem 2.2 [1]) shows that $[\top^*-\top]^{[M]} = (-1)^M C^M_T(I)$.

Now we sketch a proof of the representation theorem based on distribution theory. Recall (cf. Chapter 1 and 2 of Hörmander [2]) that $\mathcal{G}(\mathbb{R}^n)$ is the space of infinitely differentiable functions on \mathbb{R}^n which along with their derivatives decrease faster than any polynomial at infinity. Frequently we shall use \mathcal{G} to denote $\mathcal{G}(\mathbb{R}^1)$. The POL condition guarantees that $||e^{isT}|| = O(|s|^N)$ and thus T has a \mathbb{C}^n functional calculus (cf. Colojoară and Foiaș [1] for a discussion of such operators).

Define U_{f} by

(1)
$$U_{f} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\zeta) e^{i\zeta T} d\zeta$$

for any $f \in \mathcal{G}$, where \hat{f} denotes the Fourier transform of f. This is a slight modification of the usual construction of a C^n functional calculus for T. The integral is norm convergent since the function \hat{f} is in \mathcal{G} , and U_f has the usual properties

(2)
$$U_{\mathfrak{f}+\mathfrak{g}} = U_{\mathfrak{f}} + U_{\mathfrak{g}} \text{ and } U_{\mathfrak{f}\mathfrak{g}} = U_{\mathfrak{f}} U_{\mathfrak{g}}$$

One can show that

(3)
$$e^{isT}u_{f(x)} = u_{eisx}u_{f(x)}$$
 and $Tu_{f(x)} = U_{x}u_{f(x)}$.

Let ψ_0 be a cyclic vector for ${\mathsf T}$. Define a bilinear form [,] on ${\mathscr S}$ by

$$[f,g] = (\Pi^{t}\Lambda^{0}, \Pi^{d}\Lambda^{0}).$$

The next few paragraphs will be devoted to proving that [,] has the form $(,)_{\mu}$ given in REP. After this is accomplished we will show that the map $\forall: \mathcal{G} \rightarrow \mathcal{H}$ defined by

$$\forall f = u_f \psi_0$$

induces a map \bigvee_r from $H(\mu) \cap \mathcal{G}$ into a dense subspace of H. The extension of \bigvee_f to $H(\mu)$ will be the map U^{-1} required by our theorem.

The Schwartz Nuclear Theorem (cf. Theorem 2.1 of Streater and Wightman [4]) implies that there is a continuous linear functional (distribution) on $g'(\mathbb{R}^2)$ such that

(4)
$$\ell(f(x)\bar{g}(y)) = [f, q].$$

The POL condition says that

$$\frac{d^{N+1}}{ds^{N+1}} \left[e^{isx} f(x), e^{isx} g(x) \right] = 0$$

for any $f, g \in \mathcal{G}$ or equivalently

$$\frac{d^{N+1}}{ds^{N+1}} \ell(e^{isx}f(x)\bar{g}(y)) = 0.$$

Thus

$$\ell([x-g]^{N+1}f(x)\overline{g}(y))=0$$

and since linear combinations of functions of the form $f(x)\bar{g}(y)$ are dense in $\mathfrak{L}(\mathbb{R}^2)$,

$$\ell([x-y]^{N+1}h(x,y)) = 0$$

for any function $h \in \mathcal{G}(\mathbb{R}^2)$. This implies that if k is in $\mathcal{G}(\mathbb{R}^2)$ and has a zero of order N+1 on $\mathbb{E} = \{(x, y) \in \mathbb{R}^2 : x = y\}$, then $\mathcal{L}(k) = 0$.

Now we need a change of variables

$$x - y \longrightarrow \tau$$
 $x + y \longrightarrow \beta$.

Any function h in $\mathscr{G}(\mathbb{R}^2)$ has a finite Taylor expansion

$$h(\tau,\beta) = \sum_{j=0}^{N} \frac{\partial^{j}}{\partial \tau^{j}} h(0,\beta)\tau^{j} + \psi(\tau,\beta),$$

where the remainder term $\psi(\tau,\beta)$ has a zero of order N+1 in τ at $\tau = 0$. Hence $\ell(\psi) = 0^*$ and thus we can obtain

(5)
$$\ell(h(\tau,\beta)) = \sum_{j=0}^{N} \ell_{j} \left(\frac{\partial^{j}}{\partial \tau^{j}} h(0,\beta) \right),$$

where each l_j is a distribution on $\mathcal{G}(\mathbb{R}^1)$. Now any distribution s on $\mathcal{G}(\mathbb{R}^1)$ has a representation (Schwartz Kernel Theorem, sec. 2.3 Shilov [3] or equation 2-11 [4]) of the form

* Technically ψ is not in $f(\mathbb{R}^2)$, however a standard argument involving cutoff functions makes this proof of equation (5) rigorous.

$$s(f) = \sum_{\ell=0}^{\kappa} \int_{-\infty}^{\infty} b_{\ell}(x) f^{(\ell)}(x) dx$$

for some continuous functions b_{ℓ} wich grow at worst like a polynomial at infinity. If we put together the two representations above and note that

$$\frac{\partial}{\partial \tau} m(x)n(y)\Big|_{x=y} = \frac{1}{2} \Big[\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \Big] m(x)n(y)\Big|_{x=y} = \frac{1}{2} m'(x)n(x) - \frac{1}{2} m(x)n'(x)$$

we get

$$\ell(f(x)\bar{g}(y)) = \sum_{i,j=0}^{M} \int_{-\infty}^{\infty} C_{ij}(x) f^{(i)}(x) \bar{g}^{(j)}(x) dx$$

for $f, g \in \mathcal{G}$. We must restrict the interval of integration to [a,b] and in order to do this we need the following lemmas:

Lemma I. If $f \in \mathcal{G}$ and $f \equiv 0$ in a neighborhood of $\sigma(T)$, then $u_f = 0$. Moreover, the norm closure $\overline{\mathcal{P}}$ of $\mathcal{P} = \{p(T) : p \text{ is a polynomial}\}$ is equal to the norm closure $\overline{\mathcal{S}}$ of $\mathcal{S} = \{u_f : f \in \mathcal{G}\}$.

Proof. First we show that $\overline{\mathcal{P}}$ contains S. Since for each S the operator e^{iST} is in $\overline{\mathcal{P}}$ and since the integral in (1) is norm convergent, $\overline{\mathcal{P}}$ contains each operator \mathcal{U}_{f} and thus contains S.

It is easy to see from properties (2) and (3) of U_f that the Gelfand map of $\overline{\mathcal{P}}$ into the continuous functions on its maximal ideal space maps U_f into f. Thus U_f is an invertible operator if and only if f is an invertible function on the maximal ideal space of $\overline{\mathcal{P}}$ that is, on $\sigma(T)$. Now suppose that f is a function in \mathcal{G} which is zero on a neighborhood $\sigma(T)$. There is certainly some function h in \mathcal{G} which is invertible on $\sigma(T)$ and which is 0 on the support of f. Thus $U_f U_h =$ $= U_{fh} = 0$ and $U_f = 0$. The first half of Lemma I has been proved.

Now we show that $\overline{\mathcal{P}} = \overline{S}$. This is very easy for if p is a polynomial and the function h in \mathscr{G} is never zero in a neighborhood of $\sigma(T)$, then $p(T) = [U_h]^{-1}U_{hp}$ and so p(T) is the product of two operators in \overline{S} . This concludes the proof of Lemma I.

Lemma II. If $\sigma(T) = [a,b]$ where $a \neq b$, we have that if $f \in \mathcal{G}$ and $f \equiv 0$ on [a,b] then $U_f \equiv 0$.

Proof. Suppose that $f \equiv 0$ on [a, b]. Define f^{\pm} by

$$f^{+} = \begin{cases} f(x) & x \ge b \\ 0 & x \le b \end{cases}$$
$$f^{-} = \begin{cases} f(x) & x \le a \\ 0 & x \ge a \end{cases}$$

Since $a \neq b$ both f^+ and f^- are in \mathscr{G} . The functions f_n^{\pm} defined by $f_n^{\pm}(x) = f_n^{\pm}(x \mp 1/n)$ converge to f^{\pm} in the \mathscr{G} norm because

$$\lim_{n \to \infty} \left| x^{\ell} \frac{d^{\kappa}}{dx^{k}} \left[f^{\pm}(x) - f^{\pm}(x \mp 1/n) \right] \right| =$$

= $\lim_{n \to \infty} \frac{1}{n} \left| x^{\ell} \frac{d^{k}}{dx^{k}} \left[f^{\pm}(x) - f^{\pm}(x \mp 1/n) \right] / 1/n \right| = 0.$

Since $f_n^{\pm} \equiv 0$ on a neighborhood of $[\alpha, b]$, the operators $\mathcal{U}_{f_n^{\pm}}$ are all 0. However, \mathcal{U}_f is a continuous map of \mathscr{G} into $\mathscr{L}(H)$ and hence $\mathcal{U}_{f^{\pm}} = 0$. Therefore $\mathcal{U}_f = \mathcal{U}_{f^{\pm}} + \mathcal{U}_{f^{-}} = 0$.

At this point let us remark that if a = b, then Lemma II fails to be true. For example, if T is an operator whose square is zero, then the spectrum of T is $\{0\}$ and U_{f} defined by (1) for T is equal to zero if and only if f(0) = 0 and f'(0) = 0.

We had shown, several paragraphs ago, that the distribution ℓ on $\mathfrak{I}(\mathbb{R}^2)$ with property (4) has support on \mathbb{E} . Lemma I above implies further that ℓ has support on the set $\mathbb{E}_{\mathfrak{S}(\mathsf{T})} = \{(\mathfrak{x}, \mathfrak{x}) \in \mathbb{E} : \mathfrak{x} \in \mathfrak{G}(\mathsf{T})\}$. Now under the simplifying assumption that $\mathfrak{G}(\mathsf{T})$ is an interval $[\mathfrak{a}, \mathfrak{b}]$ it is easy to show (with the help of the fact that any distribution with support at a point is a linear combination of derivatives of the dirac δ -function) that the representation REP holds for the form [,].

Now we conclude the proof of the representation theorem. Define $V: \mathscr{G} \longrightarrow H$ by

$$\forall f = u_{f} \psi_{0}$$
.

Since ψ_0 is cyclic for \top , Lemma I implies that the orbit of ψ_0 under S is dense

in H , and hence V maps onto a dense subspace of H . By Lemma II we may define a map V_r of $C^{\infty}[a,b]$ into H by

$$\nabla_r g = \nabla \tilde{g}$$

where g is a function in $C^{\infty}[a,b]$ and \tilde{g} is any extension of g which belongs to \mathcal{G} . From the statement that [,] has a representation $(,)_{\mu}$ which was prove above we can conclude that

$$(\mathfrak{f},\mathfrak{g})_{\boldsymbol{\mu}} = (\nabla_{\mathfrak{r}}\mathfrak{f},\nabla_{\mathfrak{r}}\mathfrak{g}).$$

The bilinear form (,)_µ must be positive since (,) is positive. Moreover, it is positive definite since $(f, f)_{\mu} = 0$ implies that $\forall_{r} f = 0$, which implies that $\exists_{f} \psi_{0} = \forall f = 0$ which implies that $\exists_{f} \psi_{0} = \forall f = 0$ which implies that $\exists_{f} \psi_{0} = 0$ for any g. This in turn implies that $\exists_{f} g = 0$, which (by the proof of Lemma I) implies that $f \equiv 0$ on $\sigma(T)$. Thus $C^{\infty}[\alpha,b]$ can be completed in (,)_µ to produce a space H(). Naturally \forall_{r} extends to an isometry $\overline{\vee}$ from H(µ) onto H. If $f \in C^{\infty}[\alpha,b]$, then $\overline{\vee}T \overline{\vee}^{-1}f(x) = \overline{\vee}T \vee_{r}f(x) = \overline{\vee}T \vee_{f}f(x) = \overline{\vee}T \vee_{f}f(x)$. The equation $\overline{\vee}T \overline{\vee}^{-1}f(x) = xf(x)$ extends by continuity to any $f \in H(\mu)$. This completes the proof of the representation theorem.

The above theorem can be generalized considerably. In fact most of its hypotheses can be dropped an still a strong conclusion holds. Firstly, we can replace the assumption that T has a cyclic vector Ψ_0 with the assumption that T has a finite cyclic set $\{\Psi_1, ..., \Psi_n\}$. In this case we study the bilinear form [f, g] = $= (U_{f_1}\Psi_1 + ... + U_{f_n}\Psi_n, U_{g_1}\Psi_1 + ... + U_{g_n}\Psi_n)$ where F and G are C[∞] n-vector valued functions with components $F = (f_1, ..., f_n)$ and $G = (g_1, ..., g_n)$. Under the POL assumption this bilinear form will have a representation which is the natural generalization of REP to vector valued functions. Note that the form [,] in this vector valued case must be positive but not necessarily positive definite. Secondly, suppose that $T_1, ..., T_k$ is a commuting family each operator of which satisfies POL. We then are forced to consider functions f not of one variable but of k variables and to build a functional calculus

$$\mathcal{U}_{f} = \frac{1}{\sqrt{2\pi^{k}}} \int_{\mathbb{R}^{k}} \hat{f}(\zeta_{1}, \dots, \zeta_{k}) e^{iT_{1}\zeta_{1} + \dots + iT_{k}\zeta_{k}} d\zeta_{1} \dots d\zeta_{k}.$$

The bilinear form [,] on $\mathcal{G}(\mathbb{R}^k)$ defined by

$$[f,g] = (u_{f}\psi_{0}, u_{g}\psi_{0})$$

will have a representation which is the natural generalization of REP to \mathbb{R}^k . Thirdly, the operator \top need not be bounded. All that we really need to consider is a one parameter group of operators V(s) which satisfies the POL condition. If we modify the cyclic vector assumption property, then REP holds with $b = \infty$, $a = -\infty$ and V(s) maps into multiplication by e^{isx} . Fourthly, the three generalizations above can be put together to give the following theorem:

Theorem. Suppose that

a) $V_1(s), ..., V_k(s)$ are commuting one parameter groups of operators each of which satisfies the POL condition

and

b) there are n-vectors ψ_1, \dots, ψ_n such that the orbit of the subspace spanned by them under the algebra generated by $\forall_1(s), \dots, \forall_k(s)$ is dense in H.

Construct a map
$$\mathscr{G}(\mathbb{R}^{k}) \rightarrow \mathscr{L}(\mathbb{H})$$
 by

$$U_{f} = \frac{1}{\sqrt{2\pi^{k}}} \int_{\mathbb{R}^{k}} \widehat{f}(\zeta_{1}, \dots, \zeta_{k}) e^{i[\zeta_{1}T_{1} + \dots + \zeta_{k}T_{k}]} d_{\zeta_{1}} \dots d_{\zeta_{k}}.$$

Define [,] by

 $[F,G] = (\mathcal{U}_{f_1}\Psi_1 + \dots + \mathcal{U}_{f_n}\Psi_n, \mathcal{U}_{g_1}\Psi_1 + \dots + \mathcal{U}_{g_n}\Psi_n) \quad for \quad (f_1, \dots, f_n)$ and $G = (g_1, \dots, g_n)$ n-vector valued functions with components f_i, g_i in $\mathcal{G}(\mathbb{R}^k)$. Then [,] has a representation

$$[F,G] = \sum_{|\beta|, |\alpha| < M} \sum_{i,j=0}^{n} \int_{\mathbb{R}^{k}}^{\infty} \frac{\partial^{|\alpha|}}{\partial x^{\alpha}} f_{i}(x) \frac{\partial^{|\beta|}}{\partial x^{\beta}} \tilde{g}_{j}(x) d\mu_{\alpha\beta ij}$$

where $\mu_{\alpha\beta ij}$ are measures on \mathbb{R}^k and where $\frac{\partial^{\alpha}}{\partial x^{\alpha}}$ stands for $\frac{\partial^{|\alpha|}}{\partial x_1^{\alpha}}$ for each k tuple $\alpha = (\alpha_1, \dots, \alpha_k)$ of positive integers. Here $|\alpha| = \alpha_1 + \dots + \alpha_k$.

Furthermore,
$$\bigvee_j(s)$$
 acting on H corresponds to multiplication by
on the space of n-vector valued functions with components in $\Im(R^k)$.

286

BIBLIOGRAPHY

- [1] I. Colojoară and C. Foiaș, Theory of generalized spectral operators (New York, 1968).
- [2] L. Hörmander, Linear partial differential operators (Berlin, 1963).
- [3] G.E. Shilov, Generalized functions and partial differential equations (New York, 1968).
- [4] R.F. Streater and A.S. Wightman, *PCT Spin and Statistics and all that* (New York, 1964).