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Operators with a representation as multiplication
by r on a Sobolev space

H.  HEt " . ' l 'ON

I shall speak on a structure theorem for a certain class of non selfadjoint op-

erators based on the representation of such operators as multiplication by * on a type

of Sobolev space.

If,t T be a bounded operator on a Hilbert space and set V(s) = 
"itT 

.

I f  wedef inetheoperator-valuedent i refunct ion R(S):V(51"V(s) :6- isTtu isT-

a

= l lnsn ,  then T  isse l f  ad jo in t i f  andon ly i f  R(s )=  l  andhence i tseems
n = 0

,eJJoiuule to classify operators by the behavior of R ( s ) . In particular, a class of op'

eraton which seems nearly as natural and amenable to study as the self-adjoint operators

istheoperators T forwhich R(s) isapolynomial in s, that is
N

R(s )  :  V (e  ) *V (s )  :  F  An .n  .
n = 0

Under certain additional hypotheses, it will be proved that such operators have a repre-

sentation as multiplication by r on a type of Sobolev space'

(PoL)



280

The type of Sobolev space we need_is this. Let p : < f 
.vi) .be a

matrix of ( M +1 )2 measures on the interval [o, b] and define a uitrne'a. form (, 
]1o n  C - [ a , b l  U y  

M  i(REP) 
,  

( f '  i lP -  
; ,  I f  

( j 'o t j 'dr ; j

where hJ(x, : 
# 

n(xl . If (, )* is positive definite we let H (;r) stand for

the completion of C- [a, bJ in ll f llr. : VI + J L-. We will say that H (;r ) has
order M r r

The object of this talk will be to sketch a proof of

Theorem. If T vtisfrcs pOL, if T has a cyclic vector, and if T has spec_
trum lo, b J, then 

:h.ere :s 
a swe H (f.) and a unitary map l\: H.*H(p) wch

thst VT U-1 is multipbcation by x on 
'H 

(p)

Before we begin the proof of this theorem, we make a few remarks. First
of all, the theorem is much weaker than what can be proved, but for the sake of clear
exposition we postpone a description of its generalizations to the end of this talk.
secondly, it is easy to prove that the degree N of the polynomial R ( s ) is even.
undoubtedly the space H {p) can be chosen to have order N /z .lhave aheuristic
proof for this. Lastly the PoL condition can be expressed in more concerte terms.

Namely, POL is equivalent to the condition [T*-T] f N+11= 
0, where IA-B] f Ml

is defined to be the operator t (X) t-.t1*-nAn Bt- 
n 

. To check the equiv-
(=0

alence of the two conditions note that for any bounded operator

3  ; i t r * o . i sT :  -  i e - i sT * ,  T *A  -AT ]  e i sT
d.s

and hence

d u , l ,  
" - i s T * " i s T  

_  ( _ i ) N + 1 " i s r * " N * , ( l ) " i r t
4 r N + t  

-  ' t  v  v

where C, is the map of {(H), the set of all bounded operators sn H, into {(H)

defined by cr(A): T*A-AT . The pol- condition is equivalent ," ou,ll, 
R(s) =o

dsr\ 
7 I

and consequently to Cl*', I ) = 0 . A straightforward computation (cf. proof of
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Theorem 2.2tl l)  shows that I-r*-.r] tMl = (-t)Mcf crl  '

Now we sketch a proof of the representation theorem based on distribution

theory. Recall (cf. Chapter 1 and 2of Hormander [2]) that g(Rn) is the space of

infinitely differentiable functions on Rn which along with their derivatives decrease

faster than any polynomial at infinity. Frequently we shall use I to denote d<n1)'

The pOL condition *.rur-rr", tfrat l i" isri l = O(lslN) and thus T has a Cn

functional calculus (cf. Colojoari and f oiaq [1] for a discusion of such operators)'

Define Uf bY

(1) u+=
6

1 t iG)e '6 'd I
l l

Vzr -'-

forany f  e J ,where i  denotestheFouriertransformof f  .Thisisasl ight

modification of the usual construction of a Cn functional calculus for T ' The

integral is norm convergent since the function i is in I , and 111 has the usual

properties

( 2 )  U + * g :  t l 1 + L l ,  a n d  U + 9 =  t r + u g '

One can show that

r < l

( 3 )  e t " ' u { ( r )  :  t ' t r i s x l t r )  a n d  T U g t r )  :  u x f t r )

f .et  Vo beacycl icvectorfor T .Def ineabi l inearforml,)on f  by

t t ,g l  :  (U+Vo '  L [gVo)  '

The next few paragraphs will be devoted to proving that [ , ] has the form ( ' )p

given in REP. After this is accompli*red we will strow that the map V' 9*lt defined

by

Vf  :  u l yo

inducesamap V, from H(p)nJ intoadensesubspaceof H .Theextensionof

V* to H(p) will be the ma'p U-1 required by our theorem'

The Schwartz Nuclear Theorem (cf. Theorem 2.1 of streater and

Wightman [a]) implies that there is a continuous linear functional (distribution) on

J(  R2)  suchtha t



282

(4 )  t ( f  r r l gcg l ) :  [ f  ,9 ]  .

The POL condition says that

1tl l ,  t ."*f  , ' ) ,  ui '*g1xvl :  o
4 . N + 1

for any f, g e I or equivalently

1  N + 1' . . ,  L (e" " f ( , ( )0(g) )=0.
4 "  N + 1

Thus

t ( t x -  g l * * t f  ( r )  g  (g ) )  :  o

and since linear combinations of functions of the form f {r)Q(g) are dense iny(pz),

t ( t x -U l * * 'h t r ,g ) ) :  o
for any function h e g( R2) . This implies that if k is in g( p2) and has a zero of
o r d e r  N + 1  o n  f : { ( x , g ) e R z ,  x =  g } , t h e n  { ( t ) :  O .

Now we need a change of variables

I - 9 + t  x + 9 - - - + p .

Any function h in 9(R2) has a finite Taylor expansion
N :

h(s,15)  = .  ^+ h (o,p)r j * \y(c ,p) ,
j =o  o rJ

where theremainder te rm y( r ,0 )hasazeroof  o rder  N+1 in  , r  a t  c=o.Hence
{ Cy ) = O* and thus we can obtain

N ;
(s)  { . (hrc,p))  :  Zt . , t j -  h(O,p))  ,
where each .t,1 is a distribution on l;1., . ,3ii -, oistrluution s on J( R1)
has a representation (schwartz Kernel Theorem, sec, 2,3 shilov [3] or equation 2-lL
[a] of the form

*-Technically y is not in t ( R2) , however a standard argument involving cutoff
functions makes this proof'of equation (5) rigorous,
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s ( f  )  = 'T
L = O  - e

b* (  x  ) f  
( t ) ( * )  d ,

for some continuous functions bx wich grow at worst like a polynomial at infinity'

If we put together the two representations above and note that

A  1 - l 2 -  3 l  m < r l n t q ) l  =  !  m ' ( r )  n ( t )  -  {  m t r l  n ' t r )- o  m ( x ) n ( g ) [ r _ U :  - 2 ,  
a *  o g .  -  r x = 9  -  

Z  " '  Z  
'  - '

weget  M ?
l , ( { ( x )g tu l )  =  Z  J  t t ; t , . l f ( ' ) ( " lg (J )1 "1d ' t

i , j = O  - €

for f , g e g .we must restrict the interval of integration to [a,bl and in order to

do this we need the following lemmas:

lpmma l. If le J and t-: O in aneighborhood of o(T) ' then

U+:0. Moreover, the norm closure F of 9: tn^C1t 
, p is a polynomiall is

e q L a l r c t h e n o r m c l o s u r e 3 o f  s : t u t :  f  e  J ] '

proof. First we show that F contains s . Since for each_s the oper'

ator ei.T is in E and since the integral in (1) is norm convergent, P contains

each operator U 1 and thus contains S '

I t i seasy toseef romproper t ies (2)an< l (3 )o fL r l tha t theGel fandmap

of F into the continuous functions on its maximal ideal space maps U1 into 1

ThusU{ isan inver t ib leopera tor i fan t lon ly i f f i san inver t ib le func t iononthe
maximal ideal space of F that is, on 6,(T). Now suppose that f is a function in

f which is zero on a neighborhood e(T) . There is certainly some function h in

f which is invertible on 6(T) and which is O on the support of f 'Ttrus tlllJ5=

= tr+f.,= 0 and U+ = 0 . The first half of Lemma I has been proved'

Now we show that O = S ' This is very easy for if p is a polynomial

and the function h in I is never zero in a neighborhood of o(T) , then p(T) =

= f u fii, ur, and so p (T) is the product of two operators in 5 . This con-

cludes the proof of Lemma I'

L e m m a l l . f o ( T ) = [ a , b l w h e r e a + b ' w e h a v e t h a t i f f e t a n d

t = 0  o n l o , b l t h e n \ f = O '  
!

Proof. Suppose that f = 0 on [4, b) ' Define f 
' by
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f*=

+--
t -

f  ( * )

0

f (x )

U

r  > h

J r = b

J ( <  a

Y > - O r .

Sinceof  b  bo th  f+  andf -  a re in  g  .Thefunc t ionr f *  de f inedby f r , tc r l=- fn t (v r1 /n )  convergeto  f t  tn i r , .  y  normbecause

I  o  . 1 k  r - t -  -  - +  _ r

Ji r  I  x{  _5_ [ f - r* )_f r (yr  1 ln) ]  I  =n  - - + o o  
d X k

:  r im_f l -r+[f tr*)  -  +t (y. l tnt) / t t^ l  :  o.
n -') oo " drk

Since fnr : 0 on a neighborhood of [o.,b], the operators Ust are all O.

lor"::r, 
[{ 

.ir 
a continuousmap of J into E(H) andtrence ll4t:0. There_

f o r e  U * =  U 1 + + U { _ = 0 .

At this point let us remark that if o. = b , then Lemma II fails to be true.
For example, if T is an operator whose square is zero, then the spectrum of r is
[ 0 ] a n A  U n  d e f i n e d b y ( i ) f o r  T  i r " q u a t o z e r o i f  a n d o n t y i f  f  ( O ) :  O  a n d
f ' (o )=0 . '

We had shown, several paragraphs ago, that the distribution I on g(pz)
with property (4) has support on E . Lemma I above implies further that t, has
support on the st Ee (t)= {{rc,x) e E: r e 6(Tl}. Now under the simplifying
assumption that 6(T) is an interval [a,b] it is easy to show (with the help of thefact that any distribution with support at a point is a linear combination of derivatives
of the dirac 6-function) that the representation REp holds for the form [ , ] .

Now we conclude the proof of the representation theorem. Define
V: I ---+ l-l Sy

Vt  :  U t+Vo .

since yo is cyclic for T , Lemma I implies that the orbit of yo under s is dense
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in H , and hence V maps onto u dense subspace of H . By kmma II we may de-
fine a map V" of C€ [o,b] into H ty

V.9 :  Vd

where g isafunctionin Coo[a,b] and q isanyextensionof g whichbelongs
to J . From the statement that [, ] has a representation [, )p which was prove

above we can conclude that

( f ,g ) f  =  (Vr f  ,V"9 )  .

The bilinear form ( , )p must be positive since ( , ) is positive. Moreover, it is posi
tive definite since (f , f )p =O implies that V"f = 0, which implies that U+VO = Vf = O
which imp l ies tha t  Ugt [qVo:  O fo rany  9  .Th is in tu rn imp l ies tha t  U1= 02
which (by the proof of dmmi I) implies that f = 0 on o'(T). Thus C-to,bl can
be completed in ( I )p to produce a space F{( ). Natur{ly _V" extends to an iso-
met ry  V  f rog  H( ;e i  on to  H. I f  f  e  Ca[o ,b l ,  t t ren  VtV-1 [Cx l , :V tv .1 t * t :
= V T u i = V U ri ={+(x). The equation V.|. V 

-t 
f ( x ) : rf ( x ) extends by continu-

ity to any {e H(;r). This completes the proof of the representation theorem.

The above theorem can be generalized considerably. In fact most of its

hypotheses can be dropped an still a strong conclusion holds. Firstly, we can replace

the assumption that T has a cyclic vector r[i o with the assumption that T has a

finite cyclic set tvl,.'.,Vni . In this case we study the bilinear form I f, 9 ] -

= (U{, , ,Y,1*. . .+ Uq,. ,Vn, UgJl +.. .  + Ug-ry '6) where F and G are C- n-vector

valued iunctions with components p = ( f r' '.., fn ) and G = ( g,,,..., 9n). Under the

POL assumption this bilinear form will have a representation which is the natural gen-

eralization of REP to vector valued functions. Note that the form [ , I in this vector

valued case must be positive but not necessarily positive definite. Secondly, suppose

that T1 , ' .. , T1 is a commuting family eadt operator of which satisfies POL. We then

are forced to consider functions f not of one variable but of k variables and to

build a functional calculus

r{  = +J,  i  cq 1, . . . ,4r)" iTr4r*" '+ i rxI ;dI . , . .  .d\u.
t  tE ; " ; n

The bilinear form [ , ] on 9( RK) defined by

[ f  ,g l  :  (  u lvo,  urvo)
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will have a fepresentation which is the natural generalization of REP to R k . Thirdly,
the operator T need not be bounded. All that we really need to consider is a one
parameter group of operators VCs) which satisfies the POL condition. If we modify
the cyclic vector assumption property, then REP holds with b = @ , a = -- and V(s )
maps into multiplication by eLSX . Fowthly, the three generalizations above can be
put together to give the following theorem:

Theorem. Suppose that
a) V1(s) ' .. ' , V1(s ) are commuting one parameter groups of operators each of which

vtisfics the POL condition
and

b) there ue n -vectors rft ,..., Vn sttch that the orbit of the subspace spanned by
them under the algebra generated by V{5;,...,Vp(s) is dense in H .

construct a map glek)-- {t H) by

t -  1  t* {  -  
,F- , . ;=rJ_f  

,41) . . . ,  4 )  e i [81r1*  
. *4kTk]  

d4^ . .  dqr . .

D e J i n e l , ) A y

I F , G l  : ( U + . , , V r + . . . + U g n V n '  I g r y i + . - - + U g r y h )  f o r  ( f r , . . . , f n )

mtd G = (9,, ...rgn) n -vector valued functions with components I i, g 1 in fCC5.
Then l, ) nns a representation

I  r,G] = ,i, [.# r;(x) # e, c'r d*np,i
l p l , l a l c M

*here fepi,j arcmew'ureson Rk andwhere 
3i, 

standsfor
ar l ' . . .a* l

for each k tupk x : (oc,. ,...r d v) of positive integers. nere li]r.*.:;Jn.

a l o (  I

i  s x ;
g r

Furthermore, V;(s) acting on H conesponds to multiplication by
on the spoce of n -vector vafued functions with components tn g (p.k) .
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