Operators with a representation as multiplication by x on a Sobolev space

H. HELTON

I shall speak on a structure theorem for a certain class of non selfadjoint operators based on the representation of such operators as multiplication by x on a type of Sobolev space.

Let T be a bounded operator on a Hilbert space and set $V(s)=e^{i s T}$. If we define the operator-valued entire function $R(s)=V(\bar{s})^{*} V(s)=e^{-i s T^{*}} e^{i s T}=$ $=\sum_{n=0}^{\infty} A_{n} s^{n}$, then T is self adjoint if and only if $R(s)=1$ and hence it seems reasonable to classify operators by the behavior of $R(s)$. In particular, a class of operators which seems nearly as natural and amenable to study as the self-adjoint operators is the operators T for which $R(s)$ is a polynomial in s, that is

$$
\begin{equation*}
R(s)=V(\bar{s})^{*} V(s)=\sum_{n=0}^{N} A_{n} s^{n} \tag{POL}
\end{equation*}
$$

Under certain additional hypotheses, it will be proved that such operators have a representation as multiplication by x on a type of Sobolev space.

The type of Sobolev space we need is this. Let $\mu=\left\langle\mu_{i j}\right\rangle$. be a matrix of $(M+1)^{2}$ measures on the interval $[a, b]$ and define a bilinear form $(,)_{\mu}$
on $C^{\infty}[a, b]$ by
where $h^{j}(x)=\frac{d^{j}}{d x^{j}} h(x)$. If $(,)_{\mu}$ is positive definite we let $H(\mu)$ stand for the completion of $C^{\infty}[a, b]$ in $\|f\|_{\mu}=\sqrt{(f, f)_{\mu}}$. We will say that $H(\mu)$ has order M.

$$
\begin{equation*}
(f, g)_{\mu}=\sum_{i, j=0}^{M} \int_{a}^{b} f^{(j)} \bar{g}^{(j)} d \mu_{i j} \tag{REP}
\end{equation*}
$$

The object of this talk will be to sketch a proof of
Theorem. If T satisfies POL, if T has a cyclic vector, and if T has spectrum $[a, b]$, then there is a space $H(\mu)$ and a unitary map $U: H \rightarrow H(\mu)$ such that $U T U^{-1}$ is multiplication by x on $H(\mu)$.

Before we begin the proof of this theorem, we make a few remarks. First of all, the theorem is much weaker than what can be proved, but for the sake of clear exposition we postpone a description of its generalizations to the end of this talk. Secondly, it is easy to prove that the degree N of the polynomial $R(s)$ is even. Undoubtedly the space $H(\mu)$ can be chosen to have order $N / 2$. I have a heuristic proof for this. Lastly the POL condition can be expressed in more concerte terms. Namely, POL is equivalent to the condition $\left[T^{*}-T\right]^{[N+1]}=0$, where $[A-B]^{[M]}$ is defined to be the operator $\sum_{K=0}^{M}\binom{M}{K}(-1)^{M-K} A^{K} B^{M-K}$. To check the equivalence of the two conditions note that for any bounded operator

$$
\frac{d}{d s} e^{-i s T^{*}} A e^{i s T}=-i e^{-i s T^{*}}\left[T^{*} A-A T\right] e^{i s T}
$$

and hence

$$
\frac{d^{N+1}}{d s N+1} e^{-i s T^{*}} e^{i s T}=(-i)^{N+1} e^{i s T^{*}} C_{T}^{N+1}(I) e^{i s T}
$$

where C_{T} is the map of $\mathscr{L}(H)$, the set of all bounded operators on H, into $\mathscr{L}(H)$ defined by $C_{T}(A)=T^{*} A-A T$. The POL condition is equivalent to $\frac{d^{N+1}}{d s^{N+1}} R(s)=0$ and consequently to $C_{T}^{N+1}(I)=0$. A straightforward computation (cf. proof of

Theorem $2.2[1])$ shows that $\left[T^{*}-T\right]^{[M]}=(-1)^{M} C_{T}^{M}(I)$.
Now we sketch a proof of the representation theorem based on distribution theory. Recall (cf. Chapter 1 and 2 of Hörmander [2]) that $\varphi\left(R^{n}\right)$ is the space of infinitely differentiable functions on R^{n} which along with their derivatives decrease faster than any polynomial at infinity. Frequently we shall use φ to denote $\varphi\left(R^{1}\right)$. The POL condition guarantees that $\left\|e^{i s T}\right\|=0\left(|s|^{N}\right)$ and thus T has a C^{n} functional calculus (cf. Colojoară and Foiaş [1] for a discussion of such operators).

Define U_{f} by

$$
\begin{equation*}
u_{f}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(\zeta) e^{i \xi T} d \zeta \tag{1}
\end{equation*}
$$

for any $f \in \mathcal{f}$, where \hat{f} denotes the Fourier transform of f. This is a slight modification of the usual construction of a C^{n} functional calculus for T. The integral is norm convergent since the function \hat{f} is in φ, and U_{f} has the usual properties

$$
\begin{equation*}
u_{f+g}=u_{f}+u_{g} \text { and } u_{f g}=u_{f} u_{g} \tag{2}
\end{equation*}
$$

One can show that

$$
\begin{equation*}
e^{i s T} U_{f(x)}=U_{e} i s x f(x) \quad \text { and } T U_{f(x)}=U_{x f(x)} \tag{3}
\end{equation*}
$$

Let ψ_{0} be a cyclic vector for T. Define a bilinear form $[$,$] on \varphi$ by

$$
[f, g]=\left(u_{f} \psi_{0}, u_{g} \psi_{0}\right)
$$

The next few paragraphs will be devoted to proving that $[$,$] has the form (,)_{\mu}$ given in REP. After this is accomplished we will show that the map $V: \varphi \rightarrow \notin$ defined by

$$
v_{f}=u_{f} \psi_{0}
$$

induces a map V_{r} from $H(\mu) \cap \oint$ into a dense subspace of H. The extension of V_{f} to $H(\mu)$ will be the map U^{-1} required by our theorem.

The Schwartz Nuclear Theorem (cf. Theorem 2.1 of Streater and Wightman [4]) implies that there is a continuous linear functional (distribution) on $\varphi\left(R^{2}\right)$ such that

$$
\ell(f(x) \bar{g}(y))=[f, g] .
$$

The POL condition says that

$$
\frac{d^{N+1}}{d s^{N+1}}\left[e^{i s x} f(x), e^{i s x} g(x)\right]=0
$$

for any $f, g \in \mathcal{G}$ or equivalently

$$
\frac{d^{N+1}}{d s^{N+1}} \ell\left(e^{i s x} f(x) \bar{g}(y)\right)=0
$$

Thus

$$
\ell\left([x-g]^{N+1} f(x) \bar{g}(y)\right)=0
$$

and since linear combinations of functions of the form $f(x) \bar{g}(y)$ are dense in $\varphi\left(R^{2}\right)$,

$$
\ell\left([x-y]^{N+1} h(x, y)\right)=0
$$

for any function $h \in \mathscr{Y}\left(R^{2}\right)$. This implies that if k is in $\left.\mathscr{(} R^{2}\right)$ and has a zero of order $N+1$ on $E=\left\{(x, y) \in R^{2}: x=y\right\}$, then $l(k)=0$.

Now we need a change of variables

$$
x-y \rightarrow \tau \quad x+y \rightarrow \beta .
$$

Any function h in $\varphi\left(R^{2}\right)$ has a finite Taylor expansion

$$
h(\tau, \beta)=\sum_{j=0}^{N} \frac{\partial^{j}}{\partial \tau^{j}} h(0, \beta) \tau^{j}+\psi(\tau, \beta),
$$

where the remainder term $\psi(\tau, \beta)$ has a zero of order $N+1$ in τ at $\tau=0$. Hence $\ell(\psi)=0^{*}$ and thus we can obtain

$$
\begin{equation*}
\ell(h(\tau, \beta))=\sum_{j=0}^{N} \ell_{j}\left(\frac{\partial^{j}}{\partial \tau^{j}} h(0, \beta)\right), \tag{5}
\end{equation*}
$$

where each ℓ_{j} is a distribution on $\mathcal{\rho}\left(R^{1}\right)$. Now any distribution s on $\mathscr{\rho}\left(R^{1}\right)$ has a representation (Schwartz Kernel Theorem, sec. 2.3 Shilov [3] or equation 2-11 [4]) of the form

[^0]$$
s(f)=\sum_{\ell=0}^{K} \int_{-\infty}^{\infty} b_{\ell}(x) f^{(\ell)}(x) d x
$$
for some continuous functions b_{ℓ} wich grow at worst like a polynomial at infinity. If we put together the two representations above and note that
$$
\left.\frac{\partial}{\partial \tau} m(x) n(y)\right|_{x=y}=\left.\frac{1}{2}\left[\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right] m(x) n(y)\right|_{x=y}=\frac{1}{2} m^{\prime}(x) n(x)-\frac{1}{2} m(x) n^{\prime}(x)
$$
we get
$$
\ell(f(x) \bar{g}(y))=\sum_{i, j=0}^{M} \int_{-\infty}^{\infty} c_{i j}(x) f^{(i)}(x) \bar{g}^{(j)}(x) d x
$$
for $f, g \in \mathscr{Y}$. We must restrict the interval of integration to $[a, b]$ and in order to do this we need the following lemmas:

Lemma I. If $f \in \mathcal{S}$ and $f \equiv 0$ in a neighborhood of $\sigma(T)$, then $u_{f}=0$. Moreover, the norm closure $\overline{\mathcal{P}}$ of $\mathcal{P}=\{p(T): p$ is a polynomial $\}$ is equal to the norm closure \bar{S} of $S=\left\{u_{f}: f \in \mathcal{G}\right\}$.

Proof. First we show that $\bar{\rho}$ contains S. Since for each s the operator $e^{i s T}$ is in $\bar{\rho}$ and since the integral in (1) is norm convergent, $\overline{\mathcal{P}}$ contains each operator U_{f} and thus contains S.

It is easy to see from properties (2) and (3) of U_{f} that the Gelfand map of $\overline{\mathcal{P}}$ into the continuous functions on its maximal ideal space maps U_{f} into f. Thus U_{f} is an invertible operator if and only if f is an invertible function on the maximal ideal space of $\overline{\mathcal{P}}$ that is, on $\sigma(T)$. Now suppose that f is a function in φ which is zero on a neighborhood $\sigma(T)$. There is certainly some function h in φ which is invertible on $\sigma(T)$ and which is 0 on the support of $f . T$ Thus $U_{f} U_{h}=$ $=U_{f h}=0$ and $u_{f}=0$. The first half of Lemma I has been proved.

Now we show that $\bar{P}=\bar{S}$. This is very easy for if p is a polynomial and the function h in $\mathcal{\rho}$ is never zero in a neighborhood of $\sigma(T)$, then $p(T)=$ $=\left[U_{h}\right]^{-1} U_{h p}$ and so $p(T)$ is the product of two operators in \bar{S}. This concludes the proof of Lemma I.

Lemma II. If $\sigma(T)=[a, b]$ where $a \neq b$, we have that if $f \in \mathcal{G}$ and $f \equiv 0$ on $[a, b]$ then $u_{f}=0$.

Proof. Suppose that $f \equiv 0$ on $[a, b]$. Define $f^{ \pm}$by

$$
\begin{aligned}
& f^{+}= \begin{cases}f(x) & x \geq b \\
0 & x \leq b\end{cases} \\
& f^{-}= \begin{cases}f(x) & x \leq a \\
0 & x \geq a .\end{cases}
\end{aligned}
$$

Since $a \neq b$ both f^{+}and f^{-}are in φ. The functions $f_{n}^{ \pm}$defined by $f_{n}^{ \pm}(x)=$ $=f_{n}^{ \pm}(x \mp 1 / n)$ converge to $f^{ \pm}$in the ρ norm because

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \left|x^{\ell} \frac{d^{k}}{d x^{k}}\left[f^{ \pm}(x)-f^{ \pm}(x \mp 1 / n)\right]\right|= \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left|x^{\ell} \frac{d^{k}}{d x^{k}}\left[f^{ \pm}(x)-f^{ \pm}(x \mp 1 / n)\right] / 1 / n\right|=0
\end{aligned}
$$

Since $f_{n}^{ \pm} \equiv 0$ on a neighborhood of $[a, b]$, the operators $u_{f_{n}^{ \pm}}$are all 0 . However, U_{f} is a continuous map of φ into $\mathcal{L}(H)$ and hence $U_{f} \pm=0$. Therefore $u_{f}=u_{f^{+}}+u_{f^{-}}=0$.

At this point let us remark that if $a=b$, then Lemma II fails to be true. For example, if T is an operator whose square is zero, then the spectrum of T is $\{0\}$ and U_{f} defined by (1) for T is equal to zero if and only if $f(0)=0$ and $f^{\prime}(0)=0$.

We had shown, several paragraphs ago, that the distribution ℓ on $\varphi\left(R^{2}\right)$ with property (4) has support on E. Lemma I above implies further that ℓ has support on the set $E_{\sigma(T)}=\{(x, x) \in E: x \in \sigma(T)\}$. Now under the simplifying assumption that $\sigma(T)$ is an interval $[a, b]$ it is easy to show (with the help of the fact that any distribution with support at a point is a linear combination of derivatives of the dirac δ-function) that the representation REP holds for the form [,].

Now we conclude the proof of the representation theorem. Define $V: \mathscr{f} \rightarrow H$ by

$$
v_{f}=u_{f} \psi_{0}
$$

Since Ψ_{0} is cyclic for T, Lemma I implies that the orbit of ψ_{0} under S is dense
in H, and hence V maps onto a dense subspace of H. By Lemma II we may define a map V_{r} of $C^{\infty}[a, b]$ into H by

$$
V_{r} g=V_{\tilde{g}}
$$

where g is a function in $C^{\infty}[a, b]$ and \tilde{g} is any extension of g which belongs to φ. From the statement that $[$,$] has a representation (,)_{\mu}$ which was prove above we can conclude that

$$
(f, g)_{\mu}=\left(V_{r} f, V_{r} g\right)
$$

The bilinear form $(,)_{\mu}$ must be positive since $($,$) is positive. Moreover, it is posi-$ tive definite since $(f, f)_{\mu}=0$ implies that $V_{r} f=0$, which implies that $U_{f} \psi_{0}=V_{f}=0$ which implies that $U_{f} U_{g} \psi_{0}=0$ for any 9 . This in turn implies that $U_{f} \equiv 0$, which (by the proof of Lemmal) implies that $f \equiv 0$ on $\sigma(T)$. Thus $C^{\infty}[a, b]$ can be completed in $(,)_{\mu}$ to produce a space $H()$. Naturally V_{r} extends to an isometry \bar{V} from $H(\mu)$ onto H. If $f \in C^{\infty}[a, b]$, then $\bar{V} T \bar{V}^{-1} f(x)=\bar{V} T V_{r} f(x)=$ $=\bar{V} T u_{\tilde{f}}=\bar{V} u_{x \tilde{f}}=x f(x)$. The equation $\bar{V} T \bar{V}^{-1} f(x)=x f(x)$ extends by continuity to any $f \in H(\mu)$. This completes the proof of the representation theorem.

The above theorem can be generalized considerably. In fact most of its hypotheses can be dropped an still a strong conclusion holds. Firstly, we can replace the assumption that T has a cyclic vector Ψ_{0} with the assumption that T has a finite cyclic set $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$. In this case we study the bilinear form $[f, g]=$ $=\left(u_{f_{1}^{\prime}} \psi_{1}+\cdots+u_{f_{n}} \psi_{n}, u_{g_{1}} \psi_{1}+\cdots+u_{g_{n}} \psi_{n}\right)$ where F and G are $C^{\infty} n$-vector valued functions with components $F=\left(f_{1}, \ldots, f_{n}\right)$ and $G=\left(g_{1}, \ldots, g_{n}\right)$. Under the POL assumption this bilinear form will have a representation which is the natural generalization of REP to vector valued functions. Note that the form [,] in this vector valued case must be positive but not necessarily positive definite. Secondly, suppose that T_{1}, \ldots, T_{k} is a commuting family each operator of which satisfies POL. We then are forced to consider functions f not of one variable but of k variables and to build a functional calculus

$$
u_{f}=\frac{1}{\sqrt{2 \pi}^{k}} \int_{R^{k}} \hat{f}\left(\zeta_{1}, \ldots, \zeta_{k}\right) e^{i T_{1} \zeta_{1}+\cdots+i T_{k} \zeta_{k}} d_{\zeta_{1}} \ldots d_{\zeta_{k}} .
$$

The bilinear form [,] on $\varphi\left(R^{k}\right)$ defined by

$$
[f, g]=\left(u_{f} \psi_{0}, u_{g} \psi_{0}\right)
$$

will have a representation which is the natural generalization of REP to R^{k}. Thirdly, the operator T need not be bounded. All that we really need to consider is a one parameter group of operators $V(s)$ which satisfies the POL condition. If we modify the cyclic vector assumption property, then REP holds with $b=\infty, a=-\infty$ and $V(s)$ maps into multiplication by $e^{i s x}$. Fourthly, the three generalizations above can be put together to give the following theorem:

Theorem. Suppose that

a) $V_{1}(s), \ldots, V_{k}(s)$ are commuting one parameter groups of operators each of which satisfies the POL condition
and
b) there are n-vectors $\psi_{1}, \ldots, \psi_{n}$ such that the orbit of the subspace spanned by them under the algebra generated by $V_{1}(s), \ldots, V_{k}(s)$ is dense in H.

Construct a map $\mathscr{Y}\left(R^{k}\right) \rightarrow \mathscr{L}(H)$ by

$$
u_{f}=\frac{1}{\sqrt{2 \pi} k} \int_{R^{k}} \hat{f}\left(\zeta_{1}, \ldots, \zeta_{k}\right) e^{i\left[\zeta_{1} T_{1}+\cdots+\zeta_{k} T_{k}\right]} d_{\zeta_{1}} \ldots d_{\zeta_{k}}
$$

Define [,] by
$[F, G]=\left(u_{f_{1}} \psi_{1}+\cdots+u_{f_{n}} \psi_{n}, u_{g_{1}} \psi_{1}+\cdots+u_{g_{n}} \psi_{n}\right)$ for $\left(f_{1}, \ldots, f_{n}\right)$
 Then [,] has a representation
$[F, G]=\sum_{|\beta|,|\alpha|<M} \sum_{i, j=0}^{n} \int_{R^{k}}^{\infty} \frac{\partial^{|\alpha|}}{\partial x^{\alpha}} f_{i}(x) \frac{\partial^{|\beta|}}{\partial x^{\beta}} \bar{g}_{j}(x) d \mu_{\alpha \beta i j}$
where $\mu_{\alpha \beta i j}$ are measures on R^{k} and where $\frac{\partial^{\alpha}}{\partial x^{\alpha}}$ stands for $\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{k}^{\alpha_{k}}}$ for each k tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ of positive integers. Here $|\alpha|=\alpha_{1}+\ldots+\alpha_{k}$.
$e^{i s x_{j}}$
Furthermore, $V_{j}(s)$ acting on H corresponds to multiplication by on the space of n-vector valued functions with components in $\varphi\left(R^{k}\right)$.

BIBLIOGRAPHY

[1] I. Colojoara and C. Foias, Theory of generalized spectral operators (New York, 1968).
[2] L. Hörm ander, Linear partial differential operators (Berlin, 1963).
[3] G.E. Shilov, Generalized functions and partial differential equations (New York, 1968).
[4] R.F. Streater and A.S. Wightman, PCT Spin and Statistics and all that (New York, 1964).

[^0]: ${ }^{*}$ Technically ψ is not in $\varphi\left(R^{2}\right)$, however a standard argument involving cutoff functions makes this proof of equation (5) rigorous.

