Variations in Linear Algebra

Content Presentations

GUERSHON HAREL

In preparation for developing a linear algebra program for
upper-level high school students [Harel, 1985] 32 linear
textb(_)oks were analyzed to examine existing approaches to
te_achmg this topic. Since linear algebra textbooks at the
high school level are virtually non-existent, all the text-
books analyzed, but two, are at the college level. The
textbooks varied in their approaches to: (a) sequencing of
content; (b) generality of levels of vector space models;
(c) introductory material; (d) embodiment; and (e) sym-
bolization. In this paper, we characterize these approaches
gnd suggest some pedagogical considerations and ques-
tions that arise.

Sequencing of content
Two approaches to sequencing linear algebra content were
observed. In one approach, computational techniques
appear before abstract ideas (computation-to-abstraction
gpproach). The other approach is the reverse: abstract
1§jeas appear before computational techniques (abstrac-
tion-to-computation approach). Frequently, the former
approach is used by elementary textbooks, whereas the
latte'r approach is used by the more advanced textbooks.
Linear systems, linear transformations, matrix arith-
metic, and vector spaces form the core content of linear
algebra. Mathematically, these topics can be sequenced in
any .order provided vector spaces precede linear transfor-
mations. The computation-to-abstraction approach starts
w!th matrix arithmetic and linear systems, and concludes
with vector spaces and linear transformations [e.g., Anton,
1981; Kolman, 1979; Staib, 1969]. In the abstraction-to-
computation approach, matrix arithmetic and linear sys-
tems follow vector spaces and linear transformations [e.g.,
Fisher, 1970; Krause, 1970; Pillis, 1969; Thompson, 1970].
' These two approaches are based on different concep-
tions. The computation-to-abstraction approach starts
with matrix arithmetic and linear systems to enable the
student to learn the new language and the new reasoning
gradually while moving toward more abstract material; it
prepares the student for understanding the major concepts
of linear algebra, vector spaces and linear transformations.
Examples that support the conceptual basis of this
approach include the following:

1. Starting with matrix arithmetic and linear systems
provides multiple embodiments of the vector space
structure (e.g. m X n matrices and solutions of homo-
geneous linear systems), and useful techniques (e.g.
row reduction of matrices) for solving problems con-
cerning dependence and independence of vectors.

2. The matrix representation of a linear system (i.e-
Y= AX, where A is the coefficient matrix) illustrates
the notion of linear transformation.

3. The concept of dimension is based on the idea that
an independent set of vectors cannot be “overly
large” (i.e. if S={v1, va,..., v} spans a vector-space
¥, then every set in V that contains more than n
vectors is linearly dependent). This idea canbe estab-
lished by using either the Gaussian elimination pro-
cess, which is a simple algorithm for solving linear
systems [see e.g. Anton, 1981}, or the Steinitz
Replacement Lemma [see e.g. Nering, 1970] which
involves a deep mathematical induction. It is appar-
ent, therefore, that the former alternative is easier
than the latter one — particularly for a beginning
student.

The abstraction-to-computation approach suggests that,
by starting with vector spaces and linear transformations,
the ideas would be absorbed through mathematical struc-
tures, and computations will be well-motivated. Examples
supporting the conceptual basis of this approach include
the following:

1. Relationships within and between solution sets of
linear systems are more easily observed through the
vector-space structure.

9 Linear transformations motivate the study of
matrices and operations on matrices. This can be
done by presenting the matrix as a code of linear
transformation and the operations as sufficient con-
ditions for isomorphizing the structure of linear
transformations to the set of their matrix representa-
tions. [For a complete discussion, see Krause, 1970]
3. Fundamental facts concerning systems of linear
equations can be easily retrieved if the system is
viewed as a linear transformation from one vector
space to another. Thus, the important statement, “if
m < n, then an m X n system of homogeneous linear
equations has a non-trivial solution,” can be easily
verified using the properties, “a linear transforma-
tion T is non-singular if and only if T'is onto,” and
“rank(7) + nullity (T) = dimV, where V is the
domain of T.”

Levels of generality

Each of the textbooks analyzed, even those which were
designated for high school students [e.g. SMSG, 1965],
presented the general definition of a vector space. These
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textbooks differed from one another in the generality levels
of the vector space models in which they apply the theory
of linear algebra. Four levels of generality were observed:

Level 1: A vector space whose dimension is a speci-
fied number (usually 1, 2, or 3) and with defined
elements (e.g. directed segments or polynomials). 4
Level 2: A vector space whose dimension is a speci-
fied number and with undefined elements.

Level 3: A vector space whose dimension is a
parameter (i.e. n) and whose elements are defined
(e.g. R. as the space of n-tuples (xi, xz,... ,Xn), Where
x/'s are real numbers).

Level 4: A vector space whose dimension is a parame-
ter and whose elements are not defined.

Concerning the complexity of these levels, it is likely that
levels | and 4 are, respectively, the lowest and the highest
levels, whereas an ordering between levels 2 and 3 is open
to speculation. Dealing with linear algebra in levels 2and4
requires an understanding that the derived results in the
system of linear algebra depend solely on the axioms of a
vector space, not on the definition of its elements. Our
experience in teaching linear algebra suggests that aca-
demic high school students and even first year college
students find this idea difficult to grasp.

Introductory material

Textbooks provide introductory material in an attempt to
motivate the student and to integrate new mathematics
ideas with material previously studied. The pedagogical
and cognitive aspects of introductory material are well
known through the theory of advanced organizers deve-
loped by Ausubel [1968]. In linear algebra textbooks, four
main strategies to introduce new material have been identi-
fied: analogy, abstraction, isomorphization, and post-
poning.

Analogy. An analogy describes similarities between
new ideas to be learned and familiar ones that are outside
the content area of immediate interest [Reigeluth, 1983].
Two kinds of analogies were identified. The first is an
analogy to some non-mathematical content. For example,
some textbooks introduce economics or game problems
and solve them by applying operations similar to those on
matrices. The second is an analogy to a mathematical
content. For example, Amitsor [1970] introduces the defi-
nition of self-adjoint operator by analogy to the characteri-
zation of real numbers in the field of complex numbers.

Analogy is an important strategy in instruction; it has
both motivational effects [Keller, 1983] and cognitive
benefits [Reigeluth, 1983]. However, an analogy relating
mathematical content to non-mathematical content has
many nonanalogous aspects because the student has to
abstract the analogic situation in order to distinguish
between relevant and irrelevant features. This might
weaken the anticipated motivational effect. In some cases
the analogy strategy may cause confusion of concepts. For
example, in some textbooks the definition of inner product
is motivated by the idea of computing the total price of
1tems X, Xy,..., X, whose prices are p, py,..., p, respec-
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tively, by the operation:

n
(1, Xz ovry Xn) (D1, P2y Pr) = > xipi

=1

The student may erroneously think that this operation is an
inner product. In fact, this operation is not an inner pro-
duct but a bilinear form on two spaces, the space of items
and its dual space.

Abstraction.  Abstraction is a strategy for preparing
students to abstract ideas by first introducing the students
to these ideas in particular situations. For example, general
concepts (such as independence, dependence, and span),
and general theorems such as the dimensions theorem
(dim(W, + W>) = dimW, + dim W2 — dim(W, N W,)) are
generated from particular cases in vector space models
(e.g. the n-real-tuples space and the directed line-segments
space).

It is important to note that abstraction and analogy are
different strategies. In abstraction, in contrast to analogy,
the concept presented to the student is an instance of the
general concept to be learned. In analogy, the two concepts
are different, but there are some points of similarity
between them.

Two approaches to the abstraction process were found:
one is standard and used by most of the elementary text-
books; the other, suggested by Pedoe (1969), is unique.
Both warrant attention. In the standard approach, a defini-
tion or the ovem is generated from a single particular case,
often a geometrical one. The definition of vector space,
however, is not treated uniformly by textbooks that use
this approach. Some textbooks (e.g. Lange, 1968) abstract
axioms for a vector space from one specific model, usually
ata the lowest level of generality. Others (e.g. Fisher, 1970;
Pillis, 1969) begin with a vareity of models, at generality
levels 1 and 3 (e.g. directed-segments, n-tuples, matrices,
polynomial functions, and solutions to linear equations),
and generate from their common propertctor space, how-
ever, is not treated uniformly by textbooks that use this
approach. Some textbooks [e.g. Lange, 1968] abstract axi-
oms for a vector space from one specific model, usually at
the lowest level of generality. Others [e.g. Fisher, 1970;
Pillis, 1969] begin with a variety of models, at generality
levels 1 and 3 (e.g. directed-segments, n-tuples, matrices,
polynomial functions, and solutions to linear equations),
and generate from their common properties the vector
space axioms. It is likely that the latter approach has a
stronger motivational effect than the former one because
experiencing different situations with common properties
enables the student to understand the necessity for repres-
enting these situations by a general concept.

Pedoe’s approach to the abstraction process is unique in
that it offers an intermediate stage between the particular
and abstract. Pedoe’s abstraction process, which seems
compatible with the “spiral curriculum” of Bruner [1960]
and the “learning cycle” of Dienes and Golding [1971],
consists of three phases. In the first phase, central concepts
(such as linear combination, dependence, independence,
basis, and dimension) are defined and applied in vector




space models of generality level | — coordinate geometry
of two and three dimensions. In the second phase, these
central concepts are redefined in a vector space model of
generality level 2: — R.,.. Finally, these concepts are defined
a third time in the general vector space with the highest
level of generality (i.e. level 4).

The way in which Pedoe presents linear algebra concepts
in the first phase is also unique. The emphasis is on inquiry
into aspects of analytic geometry through problem solving
in terms of linear algebra. The cognitive benefit of this
approach is clear: Due to the problem solving approach,
students form deep geometrical representations of linear
algebra concepts before they encounter these concepts in
other spaces at higher levels of generality.

Isomorphization. Isomorphization is a strategy used
to motivate definitions of mathematical operations. If the
student does not see the rationale for a definition, the
concept being defined seems arbitrary. This has a negative
motivational effect on the learning of the definition. In
order to eliminate that arbitrariness from definitions of
mathematical operations some authors impose an isomor-
phism on two mathematical structures where one of these
structures is familiar to the student. For example, if the
ordinary operations of linear transformations are familiar
to the student, the operations on matrices are presented as
those conditions on the function associating a linear trans-
formation with its matrix representation that make it an
isomorphism [see Krause, 1970]. Similarly, if R, is familiar
to the student, and if operations on polynomials are to be
defined, a natural isomorphism between R, and P, (the
space of polynomials with degree less or equal to n— 1) is
imposed.

Postponing. In some textbooks the introductory mate-
rial merely consists of statements concerning the necessity,
importance, and centrality of the ideas to be learned. We
call this a postponing strategy since the need and impor-
tance of these ideas are not obvious. For example, Hoffman
and Kunze [1975] introduce the linear transformations
topic by a single statement: “We shall now introduce linear
transformation, the object which we shall study in most of
the remainder of this book” (p. 67). Frequently, the post-
poning strategy is reserved for use in more advanced
textbooks.

Embodiment

Dienes [1960, 1964] identified the principle of multiple
embodiment as an instructional tool for enhancing the
understanding of concepts and for retaining mathematical
structures. In linear algebra this principle is found in the
process of translating general definitions and theorems in
terms of given situations. Showing that the set of directed
line segments is a vector space and showing that a set of n
polynomials of degree less or equal to n is linearly depend-
ent are examples of this process. The embodiment process,
in constrast to the abstraction process, comes after the
general concept is presented.

We examined the embodiment process with respect to
familiarity and mode of representation (algebraic vs. geo-
metrical) aspects. It was found: (a) most of the textbooks
use algebraic embodiments rather than geometrical ones,

and none of the embodiments are consistently used;
(b) most of the textbooks pay scant attention to familiariz-
ing the student with the embodied situations despite the
fact that most of these situations cannot be expected to be
familiar to a beginning student of linear algebra.

Familiarity and mode of representation in the embodi-
ment process affect the formation of the student’s concept
representation: important components in the mental
representation of a concept are its external, physical refer-
ents; sources for forming this component are concrete, Or
at least semi-concrete, embodiments. Since in the abstract
system of linear algebra concrete embodiments are com-
plex physical systems which are not within the scope of
undergraduate curricula, it is the semi-concrete embodi-
ments (i.e. the geometrical mode of representations) that
must contribute to forming physical representations of
concepts. On the other hand, it is obvious that the embodi-
ment process can have no constructive cognitive effect if
the situation being embodied is not fully understood by the
student.

Harel [1985] described the difficulties students have with
algebraic embodiments dealing with mathematical systems
whose elements are collections of numbers. One of the
main reasons for these difficulties is that these systems do
not have an easily accessible geometrical or other visual
representation to describe their operations and relations.
When beginning students are presented with these systems,
they encounter, probably for the first time, mathematical
systems different in nature from the number system. They
have difficulties accepting the idea that a collection of
numbers, such as a matrix, or a function, is a mathematical
entity. That is, a mathematical object within a system that
has its own structure and its own operations (addition and
scalar multiplication).

Symbolization
A definition of a mathematical object consists of variables.
Some of these variables are encoded in the symbol of the
object, others are not. Those which are not encoded in the
symbol are, usually, fixed throughout the discussion of the
object. For example, the “Matrix of the Linear Transfor-
mation T Relative to the Pair of Ordered Bases ¢ and u”
can be represented by [ T]ew. If during the discussion of this
concept the bases ¢ and u are fixed, the concept can be
represented by the simpler symbol [T]. (See Note [1]) On
the other hand, to indicate that the matrix representation
of transformation T depends on the relationship between
the bases in its range and in its domain, the symbol [ T]¢—u
might be used. .

Textbooks in linear algebra lack uniformity in this
aspect of symbolization. Consider, forexample, the follow-
ing additional symbols assigned to the above concept:

We define the matrix representing d with respect to’
the bases 4 and B to be the matrix [a;].
[Nering, 1970, p. 38]

matrix of T with

A = respect to the = [[T(un)s’ : [Tu2)]s": ..
bases Band B

[Anton, 1981, p. 248]

< [Tun)]s
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In the former symbolization, the non-fixed \,/’a.nable
“dependency between 9 and the bases 4 and B” is not
encoded, whereas in the latter syn}bql, the superfluous
variables w1, u... U, are encoded. It is hlf&ly that a symbol
is better understood and remembered if it expresses the
main and salient variables in the concept it represents. On
the other hand, a symbol that excludes non-fixed variables
or includes superfluous variables would. not correspond
adequately to the meaning of the concept it represents, and
consequently it becomes difficult to encode and to

recognize.

Summary '

Considerable evidence shows that topics and emphases
included in a mathematics textbook have an effect on the
students’ understanding and on mathematics educational
goals [Begle, 1979]. However, most textbooks do not
express explicitly their conceptions and approach_es; these
have to be inferred from the content presentation. The
analysis provided here identifies conceptions and ap-
proaches of textbooks in linear algebra with respect to the
content presentation of 5 variables. Only one variable —
“levels of generality” — is specific to the linear algebra
content; the other four are general and independent of a
specific content. Since many instructional topics in mathe-
matics involve these four variables, our analysis can be
used as a scheme for analyzing textbooks in other areas, for
examples, group theory. This scheme may help both
instructors and textbook authors to consider the content
presentation aspects discussed in this paper.

Some general questions have emerged from this
analysis:

I. Is one of the sequencing approaches —
computation-to-abstraction and abstraction-to-com-
putation — pedagogically more effective than the
other?

2. Dieudonné’s textbook [1969] is the only one which
consistently deals with linear algebra at generality
level 2. Is Dieudonné’s teaching approach more apt,
as he claims, to lead to increased achievement in
linear algebra?

3. What should be done to get students to absorb the
important idea that the derived results in the system
of linear algebra depend solely on the axioms of
vector space, not on the definitions of specific ele-
ments? (An answer to this question was discussed in
Harel [1985]).

4, Do .thc strategies of analogy, abstraction, isomor-
phization, and postponing affect differently the stu-
dents’ understanding of new material?

5. Is one of the embodiment representations — geo-
metrical and algebraic — pedagogically more effec-
tive than the other? (An answer to this question was
discussed in Harel [1985]).
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6. To what extent does the encoding of symbols (with
respect to the aspect discussed earlier) affect the
understanding and remembering of symbols?

Note

[1] Although the variable T"is arbitrary and is therefore fixed during the
discussion of the concept, it is represented in the symbol. This pheno-
menon is common in symbolizing functions: thus the symbol f{x}
indicates that x denotes items from the function’s domain; similarly, the
symbol [T"] indicates that T'denotes items in the domain of the function

[l
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