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PROOF FRAMES OF
PRESERVICE ELEMENTARY TEACHERS
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This study asked 101 preservice elementary teachers enrolled in a sophomore-level mathematics
course to judge the mathematical correctness of inductive and deductive verifications of either
a familiar or an unfamiliar statement. For each statement, more than half the students accepted
an inductive argument as a valid mathematical proof. More than 60% accepted a correct
deductive argument as a valid mathematical proof; 38% and 52% accepted an incorrect
deductive argument as being mathematically correct for the familiar and unfamiliar statements,
respectively. Over a third of the students simultaneously accepted an inductive and a correct
deductive argument as being mathematically valid.

The concept of proof is of great importance in the study of mathematics. Smith
and Henderson (1959) stated, for example, that “the idea of proof is one of the
pivotal ideas in mathematics. It enables us to test the implication of ideas, thus
establishing the relationship of the ideas and leading to the discovery of new knowl-
edge” (p. 178). Research has explored this important topic with elementary and
high school students (Bell, 1976, 1979; Galbraith, 1981; Lester, 1975; Williams,
1980). Two studies are most pertinent to our research. Fischbein and Kedem (1982)
investigated whether high school students understand that mathematical proof
requires no further empirical verification. They verified empirically their assump-
tion that “students, after finding or learning a correct proof for a certain mathemati-
cal statement, will continue to consider that surprises are still possible, that further
checks are desirable in order to render the respective statement more trustworthy”
(p- 128). Vinner (1983) focused on the question, What makes a given sequence of
correct mathematical arguments a mathematical proof in the eyes of high school
students? He asked students to give their preference for proving a particular case
of a previously proved statement. He found they preferred using a particulariza-
tion of the deductive proof rather than the general result. The general proof was
viewed as a method to examine and to verify a particular case. Vinner further
observed that students judged a mathematical proof on its appearance, relying on
ritualistic aspects of proof.

In this study, we investigated the views of proof of a different population, pre-
service elementary school teachers. Further, we investigated a different aspect of
proof, one related to inductive and deductive reasoning.

The views of proof held by preservice elementary school teachers are important.
Because proof receives very limited attention in the elementary school curriculum,
the main source of children’s experience with verification and proof is the class-
room teacher. Classroom teachers’ understanding of what constitutes mathemati-
cal proof is important, even though they do not directly teach that topic. If teach-
ers lead their students to believe that a few well-chosen examples constitute proof,
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it is natural to expect that the idea of proof in high school geometry and other courses
will be difficult for the students.

In everyday life, people consider “proof” to be practically synonymous with
“what convinces me” (Smith & Henderson, 1959). Conviction, however, is a result
of experience; Bell (1976) suggested that “conviction arrives most frequently as
the result of the mental scanning of a range of items which bear on the point in
question, this resulting eventually in an integration of the ideas into a judgment”
(p. 24). Anderson (1985) identified this kind of proof as an “inductively valid
argument,” an argument whose conclusion is not necessarily true but only highly
probable. People in everyday life form or evaluate hypotheses by estimating the
probability of hypotheses with respect to their relevant individual experience
(Anderson, 1985). Relevant individual experience includes evidence that supports
or refutes the statement whose validity is in question.

The mathematical meaning of proof can be clearly distinguished from this eve-
ryday meaning. Anderson (1985) identified this second kind of proof as a “deduc-
tively valid argument,” where the conclusion must be true if the premises are true.

The viewpoint that a mathematical proof must be a deductive argument is cer-
tainly held by mathematically sophisticated persons. However, our experience
suggests that persons with limited experience in mathematics often hold the point
of view that an inductive argument can also be a mathematical proof. It seems
likely that the use of inductive arguments for proof in everyday life is translated
by such persons to the acceptance and production of inductive arguments as proofs
for mathematical statements; they accept and provide examples as a legitimate
process of mathematical proof. Furthermore, this viewpoint may be reinforced by
instruction in earlier grades, which frequently uses examples to verify mathemati-
cal statements. As these students encounter higher mathematics, at the high school
and university level, instructors present deductive arguments as mathematical proofs
and stress (at least implicitly) that inductive arguments do not constitute mathe-
matical proofs. Our question is what conclusions preservice elementary school
students draw about the role of inductive arguments and deductive arguments in
mathematical proof.

The following questions guided our investigation:

1. Do preservice elementary school teachers accept inductive arguments as proofs
of mathematical statements? Are their evaluations of inductive arguments depend-
ent on their familiarity with the statement?

2. Are preservice elementary teachers more convinced by some types of induc-
tive arguments than others?

3. Do preservice elementary school teachers accept that a deductive argument
constitutes a mathematical proof? Are their evaluations of deductive arguments
dependent on their familiarity with the statement?

4. Are students’ judgments of an argument influenced by its appearance in the
form of a mathematical proof—the ritualistic aspects of proof—rather than the
correctness of the argument?
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5. How do students view deductive arguments presented in the particular case,
that is, mathematical proofs in which the parameters are changed to specific
numbers?

6. Is the acceptance of inductive arguments and deductive arguments as mathe-
matical proofs mutually exclusive?

A partial investigation of the first and third questions was reported in Harel and
Martin (1986). In this report, we present our complete findings.

METHOD

Subjects

The views of proof held by 101 preservice elementary school teachers (hereaf-
ter referred to as students) enrolled in a required sophomore-level mathematics
course at Northern Illinois University were assessed in the 10th week of the semes-
ter. The students had two substantial sources of contact with the idea of mathe-
matical proof, a prerequisite high school course in geometry, and explicit atten-
tion to proof throughout the required mathematics course.

Instrument

Students were asked to judge verifications of a familiar and an unfamiliar mathe-
matical generalization. The familiar generalization, along with its proof, had been
discussed in the mathematics course 3 weeks before the instrument was admini-
stered. Although the unfamiliar generalization was appropriate for inclusion in the
course, it was not explicitly discussed. The two generalizations follow:

* Familiar generalization: If the sum of the digits of a whole number is divis-
ible by 3, then the number is divisible by 3.

* Unfamiliar generalization: 1f a divides b, and b divides c, then a divides c.

Among many possible verifications related to inductive arguments (Anderson,
1985), four common verifications related to inductive arguments were included in
the instrument:

Examples. Two particular instances of the generalization involving small num-
bers were presented. One of the examples is given in Table 1.

Partern. A chart containing a sequence of instances of the generalization was
presented. A total of 12 instances were included in the chart; examples are included
in Table 1. The pattern verification type suggests the message that one can gener-
ate as many examples as wanted in support of the general statement. This verifi-
cation type was used only with the familiar statement; the unfamiliar would require
the coordination of three sets of values to form a pattern consistent with the famil-
iar case.

Big number. A particular instance of the generalization involving large numbers
was presented. (See Table 1.) The big-number verification type suggests the
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Table 1
Inductive Verification Types"

Familiar context

Example® The sum of the digits of 48 is 12, which is divisible by 3.
The number itself is divisible by 3.
Pattern“ Numbers divisible ~ Sum of the digits Is sum
by 3 of the number divisible by 3?
3 3 YES
Big number We will pick any number so the sum of its digits is

divisible by 3, say 721234182. Is this number divisible
by 3? (Computation shown to left.) The answer is
affirmative.

Example and 31 is not divisible by 3, and we see that the sum of its

nonexample digits is 4, which is not divisible by 3. On the other
hand, 36 is divisible by 3, and the sum of its digits is 9,
which is divisible by 3.

Unfamiliar context

Example’® 12 divides 36. 36 divides 360. 12 divides 360.
Pattern® n.a.
Big number Let’s pick any three numbers, taking care that the first

divides the second, and the second divides the third; 49
divides 98, and 98 divides 1176. Does 49 divide 1176?
(Computation shown to left.) The answer is yes.

Example and 3 does not divide 5, and 5 does not divide 7. We see that
nonexample 3 does not divide 7. On the other hand, 3 divides 6, and
6 divides 12. In this case, 3 also divides 12.

%Each item was presented on a separate page, double spaced, with each sentence on a
separate line.

5Two examples were given for this verification type.

<The table contained verifications for 3, 6, 9, 12, 15, 18, 102, 105, 108, 1002, 1005, and
1008.

message that if the statement is true for an arbitrarily chosen large number, then it
is probably true for other numbers.

Example and nonexample. Students were presented with an example support-
ing the general statement and a nonexample. (See Table 1.) The nonexample
differed in form in the familiar and unfamiliar contexts. In the familiar, it was a
nonexample of the general statement in the sense that if the conclusion does not
hold, neither does the condition. In the unfamiliar, it was a nonexample of the
general statement in the sense that if the condition does not hold, neither does the
conclusion.

Three verifications related to deductive arguments were included in the instru-
ment:

 General proof. A correct general proof of the statement was presented, includ-
ing statements justifying each step. In the familiar case, we used the proof that had
been presented in the mathematics class, which was limited to three-digit numbers.
See Table 2.

« False proof. A fallacious proof of the generalization, including statements
purporting to justify each step, was presented. (See Table 2.) Although not a
deductive argument, it may be incorrectly viewed by students as a deductive argu-
ment based on its ritualistic aspects, as suggested by Vinner (1983).
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* Particular proof. Students were presented with a correct proof of the gener-
alization, including statements justifying each step, in which particular numbers
were substituted for each of the variables. See Table 2.

Table 2

Deductive Verification Types®

General
proof

False proof

Particular
proof

General
proof

False proof

Particular
proof

Familiar context

Let a be any three-digit number, with digits x, y, and z.
By the place value concept, a = 100x + 10y + z. This
equality can be written a = (99x + x) + (9y + y) + z.
By the commutative and associative properties, we get

a =(99x + 9y) + (x + y + z). Notice that the
expression 99x + 9y is always divisible by 9, and
therefore also by 3. Now if the second expression, which
is the sum of the number’s digits, is divisible by 3, then,
by the “sum property,” we get that the number itself is
divisible by 3.

Let a be any whole number such that the sum of its
digits is divisible by 3. Assuming its digits are x, y, and
z, then a = xyz. Since x + y + z is divisible by 3, also
xyz is divisible by 3. Therefore, a is divisible by 3.

Consider 756. This number can be represented as
follows: 756 = 7x100 + 5x10 + 6. This can be
rewritten 756 = (7X99 + 7) + (5X9 + 5) + 6. By the
commutative and associative properties, we get 756 =
(7X99 + 5x9) + (7+5+6). Notice that the expression
7x99 + 5x9 is always divisible by 9, and therefore also
by 3. Now if the second expression, which is the sum of
the number’s digits, is divisible by 3, then, by the “sum
property,” we get that the number itself is divisible by 3.

Unfamiliar context

a divides b; this means there exists a number k, such
that k X a = b. Also, b divides ¢, which means there
exists a number n, such that n X b = ¢. Now, substitute
for b in the last equation, and we get n X (k X a) = c.
%}; the associative property, (n X k) X a = c.

erefore, a divides c.

Let g, b, and ¢ be any whole numbers such that a
divides b, and b divides c. Since a divides b, the last
digit of a must be divisible by 3. Since b divides c, the
last digit of b divides c. From the last two statements,
we get that a divides c.

Take 4, 8, and 12. 4 divides 8, which means there must
exist a number, in this case 2, such that 2 X 4 = 8. 8
divides 24, which means there must exist a number, in
this case 3, such that 3 X 8 = 24. Now substitute for the
8 in the previous equation, and we get 3 X (2 X 4) =
24. So we found a number, (3 X 2), such that (3 x 2) x
4 = 24. Therefore, 4 divides 24.

2Each item was presented on a separate page, double spaced, with each sentence on a

separate line.

Procedure

Students were presented with each of the verifications for the two generaliza-
tions in a 30-minute test. Verifications for a given generalization were presented
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within a section. The order of related verifications was consistent between the two
sections, but the order of presentation of the two sections was randomized. Each
verification was presented along with the statement of the generalization it purported
to prove correct. Students were instructed to rate whether each verification of each
statement was a valid mathematical proof on a four-point scale, where 4 indicated
that they considered a verification to be a mathematical proof and 1 indicated that
they did not consider it a mathematical proof. The four-point scale allowed us to
split responses for later analyses into high and low categories, where responses of
3 and 4 were scored as a high level of acceptance and responses of 1 and 2 were
scored as a low level of acceptance.

RESULTS

Frequencies of ratings for each of the verifications of the two statements are
presented in Table 3. We consider the results relating to each of the research
questions in turn.

Table 3
Frequencies of Ratings for Verifications of the Familiar and Unfamiliar
Generalizations
Rating
Verification 1 2 3 4 X2 (df = 1)°
Inductive verification types
Familiar
Example 13 23 25 40 8.33**
Big number 25 20 22 34 1.20
Nonexample 16 16 32 37 13.55**
Pattern 11 15 30 45 23.77**
Unfamiliar
Example 16 20 26 39 8.33**
Big number 18 18 27 38 8.33**
Nonexample 18 25 26 33 2.23
Deductive verification types
Familiar
General proof 3 23 22 53 23.77**
False proof® 26 22 27 25 0.09
Particular proof 12 30 25 34 2.86
Unfamiliar
General proof 14 24 35 28 6.19*
False proof® 33 29 31 7 6.19*
Particular proof 19 27 33 22 0.80

2x* computed on the high-low split.
®One student did not provide a rating to this item.
*p <.05. **p <.0l.

Acceptance of inductive arguments. The distribution of the categories for the
inductive verifications for both unfamiliar and familiar contexts is shown in Table
3. Each of the inductive verifications was rated high (i.e., as 3 or 4) by more than
50% of the students. In five of the seven cases, a significantly larger number of
students rated the verification high than rated it low.
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In both familiar and unfamiliar contexts, 80% of the students gave a high valid-
ity rating (3 or 4) to at least one inductive argument, and over 50% gave a very high
validity rating (4) to at least one inductive argument. Fewer than 10% gave a very
low validity rating (1) to all four inductive arguments.

As seen in Table 4, no significant differences were found in student acceptance
of inductive arguments for the familiar statement and the corresponding arguments
for the unfamiliar statement.

Table 4
X? Statistics Comparing Frequencies of

Acceptance of Verifications of Familiar and
Frequencies of Acceptance of Unfamiliar

Statements
Verification type x2(df=1)
Inductive arguments
Example 0.00
Big number 1.33
Nonexample 1.95
Deductive arguments
General proof 2.77
False proof 2.87
Particular proof 0.15

Differences in acceptance of the different kinds of inductive arguments were not
significant for the unfamiliar statement, %2 (2, N = 101) = 1.22, n.s. These differ-
ences were significant for the familiar statement, ¥ (3, N = 101) = 8.95, p < .05.
However, when the Pattern verification, unique to the familiar statement, was
omitted from the analysis for the familiar statement, the differences were no longer
significant, x* (2, N=101) = 3.22, n.s.

Acceptance of deductive arguments. Many students rated deductive arguments
high (3 or 4) in both the familiar and unfamiliar contexts, as can be seen by stu-
dent acceptance of the general-proof verification type in Table 3; significantly more
students were categorized as High Deductive than as Low Deductive in both con-
texts. The level of acceptance of the general proof was not significantly different
between the two statements; see Table 4.

Ritualistic aspects of proof. We explored the ritualistic aspects of proof by
examining responses to the false-proof verification. On the one hand, if students
reacted to the form of the proof, they should have rated false proofs high; we call
such students High Ritualistic. On the other hand, students reacting to a logical
evaluation of the procf should have rated false proofs low; we call such students
Low Ritualistic. Because we are attempting to better understand how students view
deductive arguments, we limit our report of results concerning the ritualistic as-
pects of proof to students who are categorized as High Deductive. Frequencies of
categorizations for each statement are given in Table 5. Significantly more High
Deductive students were rated Low Ritualistic than High Ritualistic for the unfa-
miliar context. Equal numbers of High Deductive students were rated High Ritu-
alistic and Low Ritualistic in the familiar context.
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Table 5

Frequencies of Categorizations of Ritualistic Aspects of
Proofin High Deductive Students, in Familiar and
Unfamiliar Contexts

Categorization of ritualism

Context High Low x*(df =1)

Familiar 38 37 0.01

Unfamiliar 21 41 6.45*
*p <.05.

The role of particular proof. We further evaluated students’ views of the role of
deductive arguments in mathematical proof using their ratings of the particular-
proof verification type. We limited our analysis to those students who are High
Deductive and Low Ritualistic, since the other students had demonstrated a lim-
ited understanding of the semantics of deductive arguments. Furthermore, this
allowed us to be comparable with previous studies. As seen in Table 6, more stu-
dents accepting correct deductive arguments also accepted an argument presented
in the particular case than rejected it. This result is statistically significant in the
familiar case. Although the results in the unfamiliar case are not statistically sig-
nificant, the trend is in the same direction.

Table 6
Percents of Categorizations of Particular Proof Found in
High Deductive, Low Ritualistic Students

Particular proof categorization

Context High Low X2 (df=1)
Familiar 26 11 6.08*
Unfamiliar 23 18 0.61

*p <.05.

Relationship of acceptance of inductive and deductive arguments. Many students
simultaneously rated both inductive arguments and deductive arguments high, in
both the familiar and unfamiliar case, as seen in Table 7. Over 46% simultane-
ously rated general proof and at least one of the inductive-argument verification

types high.

DISCUSSION

In this section, we will answer the six research questions and suggest an inter-
pretation using frames (Minsky, 1975).

We found that many students accepted inductive arguments as proofs of mathe-
matical statements, and this acceptance was not dependent on the familiarity of the
context. Moreover, they were not more convinced by some types of inductive
arguments than others. Similarly, we found that many students accepted deduc-
tive arguments as proofs of mathematical statements, and this acceptance also was
not dependent on the familiarity of the context. This led us to postulate that in-
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Table 7
Relationship of Acceptance of Inductive and Deductive
Arguments for Familiar and Unfamiliar Statements

Rating of
inductive
arguments®
Rating of deductive argument High Low
Familiar statement
Low 2 24
High 19 56
Unfamiliar context
Low 5 34
High 16 46

?Subjects were rated in the high category for inductive arguments
if they rated any of the inductive arguments as 3 or 4. Subjects
were rated in the low category only if they rated all inductive
arguments as 1 or 2.

ductive arguments and deductive arguments represent two proof frames, constructed
by students as the result of experience in everyday life and in the mathematics
classroom.

Acceptance of inductive and deductive arguments as mathematical proofs was
not found to be mutually exclusive. This suggests that the inductive frame, which
is constructed at an earlier stage than the deductive frame, is not deleted from
memory when students acquire the deductive frame. Moreover, the everyday
experience of forming and evaluating hypotheses by using evidence to support or
refute them serves to reinforce the inductive frame. Thus, as our results indicate,
inductive and deductive frames exist simultaneously in many students. The find-
ings of Fischbein and Kedem (1982) suggest a further relationship between these
two frames. They found that many students who were convinced by deductive proof
still wanted further empirical verification. This suggests that the activation of both
the inductive and the deductive proof frames may be required for students to be-
lieve a particular conclusion.

Many students who correctly accepted a general-proof verification did not re-
ject a false-proof verification; they were influenced by the appearance of the argu-
ment—the ritualistic aspects of the proof—rather than the correctness of the argu-
ment. We can interpret this finding in terms of frames by postulating the existence
of different levels of the deductive frame. Such students appear to rely on a syn-
tactic-level deductive frame in which a verification of a statement is evaluated
according to ritualistic, surface features. Alternatively, relatively few students have
a conceptual-level deductive frame in which a judgment is made according to
causality and purpose of the argument.

A further aspect of our results relates to the role of a particular proof. We found
that students who correctly accepted a general-proof verification also showed high
levels of acceptance of a particular proof. Two explanations can be suggested for
this result. First, students may be interpreting a particular proof as an inductive
argument, in which case it is seen as an instantiation of the inductive argument
frame. This seems unlikely; the same pattern of high levels of acceptance of a
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particular proof was found in students rating inductive arguments low. Second, a
particular proof may be viewed as an instantiation of the deductive process used
in the general proof. In this case, they are “replaying” the general deductive argu-
ment in the particular case. Further evidence for this interpretation can be found
in Vinner (1983). Vinner asked students to give their preference for proving a
particular case of a previously proved statement. He found they preferred using a
particularization of the deductive process used to prove the statement rather than
the general result. We thus suggest there are two subframes of the conceptual-level
deductive frame, a generalized-results subframe and a generalized-process
subframe.

Our results suggest the model of the frames of proof held by students shown in
Figure 1. The solid arrows denote a frame-subframe relationship, and the broken
arrows denote coexisting frames.

Inductive
Frame

Deductive
Frame

] Generalized
[ Syntactic J [ Conceptual] Results

Generalized
Deductive Process

Figure 1. A schematic of students’ proof frames.

CONCLUSIONS

Limitations and suggestions for further research

Several limitations of this study follow. First, our interpretations of prospective
teachers’ views of proof are inferred from written responses. Individual interview-
ing may allow deeper understanding of these phenomena. We suggest that studies
in this mode be undertaken to validate our findings and to explicate more fully the
explanations we have suggested. Second, our questions concern the evaluation of
existing verifications rather than the production of verifications. Students may not
act the same in a production mode as in an evaluation mode. It may well be that
different knowledge structures are activated in the two settings. A full understand-
ing of how students think about the role of empirical evidence and the logical jus-
tification of mathematical proofs requires attention to this crucial aspect.

Implications

The prospective teachers in the course received extensive and explicit instruc-
tion about the nature of proof and verification in mathematics. The message re-
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ceived was not that presumed to have been transmitted. We suggest that preservice
teachers may require more experience with the place of empirical evidence in
mathematics. Perhaps more examples of the limitations of empirical evidence and
more examples of the power of mathematical proof need to be provided. Further
attention to the similarities and differences of mathematics to everyday life may
also be helpful.

REFERENCES

Anderson, J. R. (1985). Cognitive psychology and its implications (2nd ed.). New York: W. H.
Freeman.

Bell, A. W. (1976). A study of pupils’ proof-explanation in mathematical situations. Educational
Studies in Mathematics, 7, 23-40.

Bell, A. W. (1979). The learning of process aspects of mathematics. Educational Studies in Mathe-
matics, 10, 361-387.

Fischbein, E., & Kedem, I. (1982). Proof and certitude in the development of mathematical thinking.
In A. Vermandel (Ed.), Proceedings of the Sixth International Conference for the Psychology of
Mathematics Education (pp. 128-131). Antwerp: PME.

Galbraith, P. L. (1981). Aspects of proving: A clinical investigation of process. Educational Stud-
ies in Mathematics, 12, 1-28.

Harel, G., and Martin, W. G. (1986). The concept of proof held by preservice elementary teachers.
In Proceedings of the Tenth International Conference for the Psychology of Mathematics Educa-
tion (pp. 386-391). London: University of London Institute of Education.

Lester, F. K. (1975). Developmental aspects of children’s ability to understand mathematical proof.
Journal for Research in Mathematics Education, 6, 14-25.

Minsky, M. (1975). A framework for representing knowledge. In P. H. Winston (Ed.), The psychol-
ogy of computer vision. New York: McGraw-Hill.

Smith, E. P., and Henderson, K. B. (1959). Proof. In P. S. Jones (Ed.),The growth of mathematical
ideas, grades K-12 (24th Yearbook of the NCTM, pp. 111-181). Washington, DC: NCTM.

Vinner, S. (1983). The notion of proof: Some aspects of students’ view at the senior high level. In
R. Hershkowitz (Ed.), Proceedings of the Seventh International Conference for the Psychology of
Mathematics Education (pp. 289-294). Rehovot, Isracl: Weizmann Institute of Science.

Williams, E. (1980). An investigation of senior high school students’ understanding of the nature of
mathematical proof. Unpublished doctoral dissertation, University of Alberta, Edmonton..

AUTHORS
W. GARY MARTIN, Assistant Professor, College of Education, University of Hawaii, Honolulu, HI
96822

GUERSHON HAREL, Assistant Professor, Department of Mathematical Sciences, Northern Illinois
University, Dekalb, IL 60115





