
24    NOTICES OF THE AMS VOLUME 61, NUMBER 1

Common Core State 
Standards for Geometry: 
An Alternative Approach 
Guershon Harel 

Introduction
Forty-five states, including California, have adopt- 
ed common core standards in mathematics for 
kindergarten through grade twelve. The CCSS 
(Common Core State Standards) [3] are designed 
to provide strong, shared expectations and, fur-
thermore, allow the adopting states to collectively 
create and share tested tools such as assessments, 
curricula, and professional development pro-
grams. Achieve [1] has made this observation and 
further analyzed the CCSS in relation to the NAEP 
(National Assessment of Educational Progress) 
framework. Their findings suggest that the CCSS 
as a whole are mathematically more demanding 
than the current mathematics curricula. This is 
particularly true for the geometry standards due 
to their emphasis on mathematical proof, which, 
as has been widely established, is one of the most 
difficult concepts for students [8], [10].

Geometry often represents a high school stu-
dent’s first formal introduction to abstract math-
ematical reasoning. That is, the student is asked to 
(a) reason about such abstract concepts as points, 
lines, and triangles; (b) understand that certain 
geometric objects can be defined only in terms 
of their relation with each other; and (c) prove 
theorems about the Euclidean structure based on 
a small set of basic concepts and axioms. Not only 
is this type of reasoning fundamental for more ad-
vanced courses in mathematics, it is also prevalent 
in many areas of science and engineering where 
one reasons about simplified or ideal models. 
For example, in the applications of the theory of 
gravity, one thinks of mass being concentrated in 
a single point. Similarly, in the kinetics of motion, 

solid objects are almost always considered as 
points at their “center of (inertial) mass”, and 
the most fundamental insight in all of kinetics is 
that objects proceed in straight line motion un-
less acted on by a force. The idea that point, line, 
plane, and space cannot be characterized inde-
pendently of each other is analogous to situations 
where a physical quantity can be measured only 
by observing its interaction with other quantities 
(e.g., spin can be measured only by observing its 
interaction with other magnetic fields). Finally, the 
hypothetico-deductive method is undoubtedly the 
basis of all science. The practice of proving theo-
rems on the basis of a small set of axioms serves as 
a cognitive precursor to the vital scientific practice 
of deriving one law from more fundamental laws; 
the derivation of Kepler’s laws from Newton’s 
laws—one of the greatest triumphs of calculus—is 
an example. Because high school geometry plays a 
key role in the development of our students’ abil-
ity to reason about abstract models in mathemat-
ics, science, and engineering, we believe that it is 
absolutely essential that teachers and curriculum 
developers attend to the question of how to mo-
tivate abstract geometric concepts and reasoning 
to their students.

A close analysis of the narrative of the CCSS in 
high school geometry (hereafter, CCSS-Geometry) 
has revealed potentially serious problems with 
their future implementations. Our concerns were 
further validated by some of the initial curricu-
lar material developed, presentations given by 
teachers and curriculum developers in teacher 
conferences, and conversations with teachers 
who have participated in regional professional 
developments targeting the CCSS-Geometry. Col-
lectively, these materials and activities represent 
a particular interpretation of the CCSS-Geometry 
that is pedagogically unsound. Given its current 
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Lack of Attention to Students’ Intellectual Needs

It is hard to imagine any educator disagreeing with 
the CCSS goal: “During high school, students begin 
to formalize their geometry experiences from el-
ementary and middle school, using more precise 
definitions and developing careful proofs.” The 
question of critical importance is, How do we bring 
students to see an intellectual need to formalize 
their informal geometry experiences into formal 
definitions and to reason deductively when justify-
ing or refuting claims? That is to say, how do we 
problematize students’ current experiences so that 
they come to understand and appreciate precise 
definitions and careful proofs? The conceptual 
basis for this question is Piaget’s theory of learning 
(see, for example, [13]). In essence, according to 
this theory, the means—the only means—of learn-
ing is problem solving. In Piaget’s terms, a failure 
to assimilate results in a disequilibrium, which in 
turn leads the mental system to seek equilibrium 
to reach a balance between the structure of the 
mind and the environment. Learning transpires 
when such balance occurs. While Piaget himself 
concentrated on the development of mathemati-
cal knowledge at the early stages, his theory was 
extended and applied to advanced topics going 
into undergraduate mathematics.

The question of intellectual necessity does not 
seem to be part of the repertoire of considerations 
by current Common Core-based curricula. The 
transition from informal to formal is done largely 
descriptively by merely restating concepts and 
assertions assumed to be understood intuitively 
into formal definitions, theorems, and proofs. Ba-
sically, this is precisely the approach that has been 
in use for decades, which, as we now know from 
status studies on students’ conceptions of geom-
etry and proof, has failed miserably. In aggregate, 
these studies show that “students accept examples 
as verification, do not accept deductive proofs 
as verification, do not accept counterexamples 
as refutation, accept flawed deductive proofs as 
verification, accept arguments on bases of other 
than logical coherence, offer empirical arguments 
to verify, cannot write correct proofs” ([10], p. 59).

A case in point is the ability to characterize 
objects and prove assertions in terms of math-
ematical definitions, what might be called defini-
tional reasoning. Evidence exists to indicate that 
this way of thinking is difficult to acquire. For 
example, in Van Hiele’s model [14], only those 
high school students who reach the highest stage 
of geometric reasoning can reason in terms of 
definitions (see [2]). College students too experi-
ence difficulty reasoning in terms of definitions. 
For example, asked to define “invertible matrix”, 
many linear algebra students stated a series of 
equivalent properties (e.g., “a square matrix with 
a nonzero determinant”, “a square matrix with 
full rank”, etc.) rather than a definition. The fact 

widespread use, we call this interpretation the 
standard approach.

Upon this realization, we developed an alterna-
tive interpretation of the CCSS-Geometry grounded 
in the intellectual need of the students. The notion 
of intellectual need was defined technically and 
discussed at length in [9] and will become clearer 
as this article unfolds. Generally speaking, intel-
lectual need is an expression of a natural human 
behavior: When people encounter a situation that 
is incompatible with or presents a problem that 
is unsolvable by their existing knowledge, they 
are likely to search for a resolution or a solution 
and construct, as a result, new knowledge. Such 
knowledge is meaningful to them because it is a 
product of their personal need and connects to 
their prior experience. This human nature is the 
basis for what we call the necessity principle: For 
students to learn what we intend to teach them, 
they must have a need for it, where “need” refers 
to intellectual need, not social or economic needs 
[7], [9]. Pedagogically, this principle translates into 
three concrete instructional steps: (1) Recognize 
what constitutes an intellectual need for a particu-
lar population of students (high school students in 
our case), relative to the concept to be learned. (2) 
Present the students with a problem or sequence 
of problems that corresponds to their intellectual 
need and from whose solutions the concepts can 
be elicited. (3) Help students elicit the concepts 
from solutions to these problems.

The Standard Approach
The CCSS-Geometry consists of goals together with 
narrative. We agreed with the goals (e.g., reason 
abstractly, construct viable arguments, use appro-
priate tools strategically, attend to precision, look 
for and make use of structure, and look for and 
express regularity in repeated reasoning), and we 
are particularly pleased with the new emphasis on 
geometry proof and construction (prove geometric 
theorems, make geometric constructions). We are 
concerned, however, with the narrative and espe-
cially with how it is currently being interpreted. 
Our characterization of the standard approach is, 
thus, based on this narrative and other resources, 
such as test items, presentations given in teacher 
conferences about the CCSS-Geometry, and some 
of the Common Core-based texts currently under 
examination for adoption by school districts. 
The ultimate goal of this article is to point out 
potential pitfalls with this approach and offer an 
alternative one.

Our main concerns can be summarized as (1) 
lack of attention to students’ intellectual needs, (2) 
premature introduction to and overemphasis on 
plane transformations, and (3) lack of clarity about 
the importance of separating the analytic study 
and the synthetic study of Euclidean geometry.
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to have represented and that any transformation 
moves at most a few points, but of course this is 
not the case. For example, when one envisions 
rotating a triangle in a plane, one must be able to 
think of the rotation as a function acting on the 
plane, that is, rotating the entire plane, not just 
the triangle.

Why is there a focus on plane transformations? 
one might ask. An answer to this question can be 
found in [3]: namely, that rigid motions create 
continuity from middle school geometry to high 
school geometry. Once the motions of translation, 
reflection, and rotation are defined formally, they 
provide the foundation for the concept of superpo-
sition and, in turn, for congruence and congruence 
criteria; and once the motion of dilation is defined 
formally, it provides the foundation for similarity 
and the similarity criteria.

In the approach taken here, two geo-
metric figures are defined to be con-
gruent if there is a sequence of rigid 
motions that carries one onto the other. 
This is the principle of superposition. 
…During the middle grades, through 
experiences drawing triangles from 
given conditions, students notice ways 
to specify enough measures in a tri-
angle to ensure that all triangles drawn 
with those measures are congruent. 
Once these triangle congruence crite-
ria (ASA, SAS, and SSS) are established 
using rigid motions, they can be used to 
prove theorems about triangles, quad-
rilaterals, and other geometric figures. 
…Similarity transformations (rigid mo-
tions followed by dilations) define 
similarity in the same way that rigid 
motions define congruence, thereby 
formalizing the similarity ideas of 
“same shape” and “scale factor” de-
veloped in the middle grades. These 
transformations lead to the criterion 
for triangle similarity that two pairs of 
corresponding angles are congruent. [3] 

Thus, the main purpose of the focus on plane 
transformations throughout middle school and 
high school is merely to establish the concept of 
congruence and similarity and the criteria for tri-
angle congruence and triangle similarity. Support 
for this conclusion can be found in [15]:

One cannot overstate the fact that the 
CCSS do not pursue “transformational 
geometry” per se. Transformations 
are merely a means to an end: they 
are used in a strictly utilitarian way to 
streamline the existing school geom-
etry curriculum. One can see from the 
high school geometry standards of the 
CCSS that, once translations, rotations, 

that they provided more than one such property 
is an indication they are not definitional reason-
ers [6]. The standard approach seems to take 
for granted definitional reasoning. For example, 
taking the CCSS-Geometry’s statement, “Know 
precise definitions of angle, circle, perpendicular 
line, parallel line, and line segment, based on the 
undefined notions of point, line, distance along a 
line, and distance around a circular arc” [3] literally 
in geometry curricula, as some current Common 
Core-based textbooks do, is likely to be unproduc-
tive for most students. Just telling students that a 
particular term is undefined does not guarantee 
that they will consider it as such and use it as a 
basis for defining other concepts.

Over a century ago, a great mathematician, with 
deep pedagogical sensitivity, pointed to the chal-
lenge of definitional reasoning: “What is a good 
definition? For the philosopher or the scientist, it 
is a definition which applies to all objects to be 
defined, and applies only to them; it is that which 
satisfies the rules of logic. But in education it is 
not that; it is one that can be understood by the 
pupils.…” (Poincaré, 1952, p. 117).

Premature Introduction to and Overemphasis on 
Plane Transformations
Central to the CCSS-Geometry is the concept of 
plane transformation. In the standard approach 
the transition from middle school geometry to 
high school geometry is to be carried out through 
the rigid motions of translation, reflection, and ro-
tation and the motion of dilation. In middle school 
geometry, these motions are delivered informally, 
and in high school they are defined as functions on 
the plane. In both levels, the motions are merely 
described, not intellectually necessitated through 
problems the students understand and appreciate, 
for example, by helping high school students see 
the power of reasoning in terms of plane trans-
formations when solving geometry construction 
problems, as we will see in the next section.

This intellectual-need-free pedagogy has been 
dominant in current mathematics curricula. One 
of its characteristics is that it takes certain dif-
ficult conceptualizations for granted. Relevant to 
our discussion here is the overwhelming evidence 
that students have enormous difficulties with the 
concept of function and that the process of acquir-
ing this concept is inevitably challenging (see, for 
example, [5], [12]). Yet, plane transformations are 
central in the CCSS-Geometry. The formal defini-
tions of plane transformations require the applica-
tion of advanced conceptualizations of functions, 
right at the start of the introduction of deductive 
geometry. And not just any functions! Students 
must understand transformations as functions 
from the plane to the plane. Thompson [12] makes 
a strong argument that this is a tremendous intel-
lectual achievement for students. They think that 
transformations act only on the points you happen 
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one gets from a synthetic proof of a concurrency 
theorem (e.g., “The three medians in a triangle 
are concurrent”) to the insight one gets from an 
analytic proof of the same theorem. In this respect, 
the distinction between the two geometries is 
analogous to, for example, the distinction between 
bijective proofs and generating function proofs of 
combinatorial identities and formulas for counting 
various classes of combinatorial objects. In many 
cases, bijective proofs provide more insight and 
understanding of the theorem at hand than proofs 
by manipulating formal series.

A Nonstandard Approach
This leaves us with a challenging question: What 
might be an alternative approach to the standard 
approach that would address all these concerns 
and achieve the ultimate goals of the CCSS-Geom-
etry for all students? Our answer to this question 
was to develop, implement, and test a yearlong ge-
ometry unit in deductive geometry that positions 
the mathematical soundness of the content taught 
and intellectual need of the student at the center 
of the instructional effort. For reasons which will 
become clear shortly, we call this approach a non-
standard approach and the unit that is based on 
it Conversations with Euclid.

Many features differentiate the Conversations 
with Euclid unit from the curricula that follow the 
standard approach. We begin with four features as 
advance organizers to the presentation of the unit: 
(a) The Conversations with Euclid unit intellectu-
ally necessitates the abstract nature of geometric 
objects, including the so-called undefined terms 
such as point, line, and plane and attends to pre-
cise definitions and proofs without dwelling on 
axioms and postulates; (b) only when these critical 
skills are advanced significantly does it elicit plane 
transformations, and it does so by bringing the 
students to see their power to simplify solutions 
to geometry problems; (c) only when this power is 
sufficiently realized by the students does the unit 
use plane transformations to establish the congru-
ence and similarity criteria; and (d) the unit studies 
Euclidean geometry synthetically. Following this 
presentation, we list other fundamental features  
of the Conversations with Euclid unit.
The Conversations with Euclid Unit: A Synopsis
We piloted the Conversations with Euclid unit 
during the summers of 2012 and 2013 with forty-
two in-service secondary school teachers. At the 
center of the unit is a thought experiment, the 
goal of which is the process of gradually neces-
sitating the abstract nature of geometric objects 
and with it the notion of geometric proof. The 
thought experiment, if extended, can be thought 
of as an allegory of the historical development of 
geometry—from Euclid (323–283 BC) to Hilbert 
(1862–1943). However, the stage of the thought ex-
periment that is relevant to high school geometry 

reflections, and dilations have con-
tributed to the proofs of the standard 
triangle congruence and similarity cri-
teria (SAS, SSS, etc.), the development 
of plane geometry can proceed along 
traditional lines if one so desires.

It didn’t seem to bother Euclid to define con-
gruence through the image of picking a figure up 
and laying it on top of another, and it is unlikely 
that the same action would bother high school 
students right at the start of their geometry 
course. The amount of “curricular space” needed 
to establish congruence and similarity through 
plane transformations is substantial, as can be 
seen from the following data: The CCSS-Geometry 
for high school Euclidean geometry (not includ-
ing trigonometry) appears under eight headings, 
three of which (close to 40 percent) are devoted 
to transformations in the plane. (This does not 
include the preparation expected in the middle 
school geometry!) Those eight headings are: (1) 
Experiment with transformations in the plane 
(154 words), (2) Understand congruence in terms 
of rigid motions (98 words), (3) Prove geometric 
theorems (129 words), (4) Make geometric con-
structions (77 words), (5) Understand similarity in 
terms of similarity transformations (126 words),  
(6) Prove theorems involving similarity (47 words),  
(7) Understand and apply theorems about circles 
(88 words), and (8) Find arc lengths and areas of 
sectors of circles (31 words). This word count 
shows that the narrative devoted to transforma-
tional geometry occupies over 50 percent of the 
entire narrative allocated to Euclidean geometry.

The standard approach, thus, would require 
enormous effort and time to be spent on plane 
transformations—their definitions, compositions, 
and properties—which will inevitably shift the at-
tention from deductive reasoning, the main objec-
tive of the CCSS-Geometry.
Lack of Clear Distinction between Analytic 
Geometry and Synthetic Geometry
The CCSS-Geometry indicates the importance of 
studying Euclidean geometry both analytically 
and synthetically and, further, points to the role 
of analytic geometry as a tool to connect algebra 
and geometry. The CCSS-Geometry, however, is 
silent about the sequencing of and relative em-
phasis on the two studies. The result is that, in the 
name of integrated math, some current Common 
Core-based textbooks blend analytic geometry 
with synthetic geometry, putting emphasis on the 
former and giving limited attention to the latter. 
While both geometries are important, synthetic 
geometry has special roles in school mathematics. 
Beyond the problem-solving skills one develops 
from studying Euclidean geometry synthetically, 
one also develops a crucial way of thinking: the 
desire to know what makes a theorem true, not just 
that it is true. Compare, for example, the insight 
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of this term appears here.]…we share no physical 
experiences with Euclid, so the communication with 
him is expected to be very challenging. This is the 
reason the mathematicians decided to focus on very 
simple objects as a start. …

ACTIVITY: WHILE THE MATHEMATICIANS ARE 
THINKING...
Question: What are some of the basic objects of 
our surroundings that you recommend the team 
should start with?

To the teacher:
As students make suggestions, keep reminding 

them that we are only interested in the spatial 
description of the objects, not their functions. It is 
not necessary for the students to come up with and 
agree upon a particular set of objects. What is im-
portant is that the students realize how difficult the 
assignment is. This will prepare them for the next 
mathematicians’ decision to focus on the simplest 
objects of humans’ physical surroundings: point, 
line, and plane.

The mathematicians decided to start with what 
seemed to them the most elementary objects of our 
physical world: planes, lines, and points. Once this 
decision was made, they turned to the next two 
questions in their list: 

2. What are humans’ images of point, line, and 
plane? 

3. What is a useful way to imagine point, line, 
and plane when we do math?

It was necessary for the mathematicians to 
answer these two questions before engaging in the  
fourth question.

4. How can we share with Euclid the way we 
think of point, line, and plane when we do math? 

ACTIVITY: WHILE THE MATHEMATICIANS ARE 
THINKING … 
Discuss in your small group Questions 2 and 3. 

To the teacher:
It should not be difficult for the students to agree 

that humans’ image of a plane is a flat surface 
extending indefinitely in its four directions: north, 
south, east, and west; that humans’ image of line is 
a thin thread stretched tight and extending indefi-
nitely in its two directions; and that humans’ image 
of point is a dot.

The goal of the discussion of Question 3 is merely 
to prepare students for the dialogue that follows. 
In this dialogue, students will learn an explanation 
as to why it is necessary and useful to go one step 
further by imagining point, line, and plane as ob-
jects with no thickness.

Although students should not see this dialogue 
until after this discussion, the teacher can use the 
ideas in the dialogue to navigate the discussion.

At this point the students are presented  
with a debate among the four mathematicians 

is limited in scope, but it serves as a pedagogical 
tool and mathematical foundation for the entire 
Euclidean geometry.

In what follows we present a few sporadic seg-
ments from the unit’s lessons to illustrate how 
the necessity principle was implemented. These 
segments alone do not capture the logical flow of 
the lessons nor do they give a sufficient portrait 
of the rich classroom debate that was generated 
as the unit was taught. They do, we hope, provide 
an image for the nonstandard approach we are 
advocating.

Due to space limitations, it was necessary to 
omit most of the narrative within the segments. 
The parts that are direct quotes from the units 
appear in italics to separate them from the rest 
of the discussion.
Necessitating the Abstract Nature of Geometric 
Concepts
The first lesson of the unit begins with a story 
about a group of mathematicians engaging in a 
certain project, and the students are asked to par-
ticipate in the project’s dilemmas and resolutions.

Imagine an intelligent alien who possesses none 
of our visual, kinesthetic, or tactile senses and, 
therefore, does not share any of the images we have 
for our physical world. A team of four mathemati-
cians, Natalie, Jose, Eli, and Evelyn, began a thought 
experiment of communicating with such an alien, 
who they named Euclid.1 

The mathematicians began with two questions: 
(1) What aspects of humans’ life should they begin 
describing to Euclid? And (2) What symbols and 
language to use to communicate to Euclid these 
aspects of life? After some discussion they decided 
that, at this stage of the thought experiment, it is 
best to focus only on the first question. And as to 
the second question, they decided that for now they 
should proceed as if Euclid were a person who spoke 
English and could think logically.

But humans’ life is very complex—where should 
they start? Again, after some discussion, they nar-
rowed their focus to humans’ physical surround-
ings. But even this turned out to be very complex; 
for example, imagine telling someone who is blind 
and has no movement or touching sensations what 
a tree is. So the mathematicians decided to narrow 
their thought experiments to four questions: 

1. What are the most basic physical objects of 
our surroundings?

2. What are humans’ images for these objects?
3. What is a useful way to imagine these objects 

when doing math? 
4. How can we share with Euclid the way we 

think of these objects when we do math?
You might ask, what is meant by the term 

“image”? An image of an object is [a discussion 

1The names are used in dialogues among the four math-
ematicians debating various questions.  
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in the development of the unit. The theme is abso-
lutely essential to the development of geometric 
proofs for the crucial reason that the incorporation 
of geometric figures in proofs is possible only if 
one understands the axioms that underlie these 
figures. (More on this point on page 36.)
Necessitating Geometric Proofs and 
Constructions
To necessitate the idea behind geometric proofs, 
the following question is raised: Can Euclid think 
logically as we do? The following activity, which 
appears in the unit as the 2nd Conversation with 
Euclid (in Lesson 2), illustrates the general ap-
proach taken to advance the concept of proof and 
abstract definitions of geometric objects.

2nd Conversation with Euclid
We: Euclid, we are going to define for you a new 
concept, called vertical angles. We wonder if you 
observe any property of these angles.
Euclid: I am ready.
We: When two lines cross, four angles are formed. 
The pairs of angles that do not share a side are 
called vertical. For us, vertical angles look like this.

Euclid: First, you know I am blind, so I have no idea 
how it looks to you. Second, I don’t understand your 
definition. You have never told me what an angle is!
We: Oh, yes—you are right—we forgot. An angle 
is the figure formed by two rays which begin at 
the same point; this point is called the vertex of 
the angle.
Euclid: Again, you are using a geometry term I am 
not familiar with: What do you mean by ray?
We: Sorry, Euclid. We keep forgetting you don’t 
know many of the terms we know. After this lesson 
we will define for you a collection of terms which 
will be in use for some time in our conversations. 
These are terms we learned in middle school. As to 
ray, take a segment and extend it in one direction. 
What you get is called a ray. And just for our record, 
to us a ray looks this:

Euclid: Now I know three new terms: ray, angle, 
and vertical angles. You are asking me what I ob-
serve about vertical angles—right?
We: Right.

justifying the need and usefulness of thinking of 
point, line, and plane as objects with no thickness. 
The students are also asked to add their own jus-
tifications. Following this, the students are asked 
to suggest ways to communicate to Euclid these 
images. The goal is to bring them to experience 
the difficulty of this task so they appreciate the 
mathematicians’ idea to describe the spatial rela-
tions among these objects rather than each object 
individually. After this discussion (in our pilot, this 
was an intense discussion among the teachers), 
the students are presented with the mathemati-
cians’ ideas. For example, to convey to Euclid 
the images  (1) “Points and lines do not have any 
thickness”, (2) “There are as many lines as pairs 
of points”, (3) “Lines do not bend” and (4) “Planes 
are flat”, the mathematicians chose the following 
statements, respectively: (1) “Through any point, 
infinitely many lines can be drawn”, (2) “A line can 
be drawn between any two points”, (3) “Only one 
line can be drawn between two points”, and (4) “If 
a line shares two points with a plane, the line must 
be on the plane”.

In sum, the central theme behind the above 
activities was that these statements convey an 
idealized (perfect) version of the points, lines, and 
planes we experience in our surroundings. Part of 
the summary of Lesson 1 concerning points and 
lines is:

First, the points and lines we draw on a 
sheet of paper, for example, have width, 
no matter how small we draw them. The 
points and lines we conveyed through 
these statements have no thickness. 
Second, while we can imagine drawing 
infinitely many lines through a point, 
no one can do so with a pencil on a 
sheet of paper, no matter how sharp 
the pencil is. Third, we can imagine 
extending a segment indefinitely in 
both directions, but in reality any line 
is of a limited length. Fourth, we can 
imagine segments of any length. When 
communicating with Euclid, we should 
always remember that, so far, these are 
the only images he has for our physical 
world; if we don’t, he wouldn’t under-
stand what we say to him about objects 
made of points, lines, and segments.

We eventually call statements such as state-
ments 1–4 postulates. However, the goal is not to 
provide complete rigorous axiomatic foundations 
to geometry. Rather, the goal is to necessitate 
the idea that in geometry we deal with idealized 
physical objects, not the actual objects in our sur-
roundings, and so geometric figures we draw on a 
sheet of paper are merely signs representing our 
memory images of spatial perceptions. As can be 
seen in the dialogues below, this theme is central 
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that point. But how do I imagine constructing two 
perpendicular lines? You never taught me that. 
Nor did you ever teach me how to bisect an angle.
We: Okay. Let’s start with how to construct two 
perpendicular lines: 
1. Take any line. Call it l1.
2. Take a point A not on the line.
3. Draw a circle whose center is at A and which 
intersects the line at two points, B and C. Call the 
radius of this circle r.

Euclid, pardon us; we have to pause for a few 
minutes. In order to keep track of our construc-
tion, we draw for ourselves each of the steps in 
the construction. We realize that the only two con-
structions you can perform are (1) creating a line 
through two given points and (2) creating a circle 
with given center and radius. We invented two me-
chanical instruments to draw these objects. One is 
called a straightedge, which we use to draw lines, 
and the other is called a compass, which is used to 
draw circles.

Euclid: Go ahead—I’ll wait.…
We: 
4. Draw a circle with center B and radius r, and 
draw another circle with center C and radius r. 
These two circles intersect at a point; call it D. 

5. Draw a line l2 between A and D.
We claim that l1 is perpendicular to l2 .

ACTIVITY: WHILE EUCLID IS THINKING…
Predict what Euclid might come up with. (You may 
experiment with the geometry software available 
to you.) 

Euclid: I say that any two vertical angles are equal.
We: What makes this true?

ACTIVITY: PREDICT EUCLID’S PROOF

Euclid: Imagine two lines intersecting; they create 
two pairs of vertical angles. Take any one of these 
angles and one of the angles that is adjacent to it. 
Now…
We: Wait a second, Euclid—we need to draw these 
lines, so we can follow you. We are humans, re-
member? Unlike you, we sometimes need to draw 
figures to assist us in our thinking.
Euclid: I can’t see these figures.
We: Yes, we know; these figures are just for us. So 
for example, when you say “line” or “point,” we 
imagine a line and a point, just like the way you 
do, and at the same time we draw them on a piece 
of paper for ourselves.
Euclid: Okay.
We: We drew two lines, l1 and l2 through a point A.
Euclid: Good—you can do that because of Postulate 
2. Since one can draw unlimited number of lines 
through a point, one can definitely draw two lines 
through a point.
[The following figure was described to Euclid and 
then he continued.]

Euclid: �1+�2=180° because �1 and �2 are adja-
cent. �2+�3=180° because �2 and �3 are adja-
cent. From here, �1=180º–�2 and �3=180°–�2. 
Hence �1=�3.
We: Bravo, Euclid, you proved what you claimed 
to be true. 

ACTIVITY: COMPARE EUCLID’S PROOF TO 
YOUR PROOF.

7th Conversation with Euclid
We: Let’s now go back to the questions you asked 
in Conversation 3 (not appearing in this presenta-
tion).
Euclid: Oh, yes: You taught me how to imagine 
constructing a line: I take two points and imagine 
a line between them, as stated in Postulate 3. You 
also taught me how to imagine constructing a 
circle: I take a point in the plane and imagine all 
the points in the plane that are equidistant from 
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Euclid: Why is that? 
We: Take the triangles ABD and ACD. They are 
equal in three sides: AB =AC, DB=DC, and AD is 
common. Hence, by the SSS Theorem they are 
congruent.
Euclid: Wow—this is exciting!! Can I do the next one 
(bisecting an angle)?
We: Go ahead.

ACTIVITY: WHILE EUCLID IS THINKING ….
Predict what Euclid might come up with. (You may 
use geometry software available to you should you 
wish to do so.) 

Euclid: 
1. Take any angle and mark its vertex by A.
2. Construct a circle with center at A.
3. The circle intersects the sides of the angle at two 
points, say,  B and C.
We: Hold on… We need to draw this: 

Euclid: Now, construct a circle with center at B, and 
another circle with the same radius at C, so that the 
two circles meet at a point. Call this point F. I say 
FA is on the angle bisector of angle A. 

ACTIVITY: PREDICT EUCLID’S NEXT STEP 

Now, construct the segments BF and CF. The 
triangles ABF and ACF are congruent by the SSS 
Theorem, since by construction, AB =AC, BF =CF, 
and AF is common to the two triangles. Hence  
�BAF = �FAC.
We: Done! 

Necessitating Transformational Geometry
Our treatment of transformational geometry is 
completely different from that of the standard 
approach. While in the standard approach, plane 
transformations appear early in the curriculum, in 
the nonstandard approach they are defined at the 
completion of four chapters: congruence, triangle 
inequality, parallelograms, and circles, focusing 
extensively on proofs and Euclidean constructions. 
The following two conversations are five chapters 
apart: the first aims to raise the need for rigid mo-
tions, and the second is a dialogue demonstrating 
our approach to eliciting them. 

5th Conversation with Euclid
We:  The congruence criterion we stated earlier [in 
Conversation 3] about congruent triangles is true. 
Let’s restate it: If two sides and the angle enclosed 
by them in one triangle are equal respectively to 
two sides and the angle enclosed by them in another 
triangle, then such triangles are congruent.
Euclid: Why would this be true?
We: Here is our first attempt to convince you of 
this congruence criterion. Tell us if it makes sense 
to you. Please bear with us, as we have to draw 
pictures to help us keep track of our description. 
Euclid: Go ahead, I am getting used to your habits 
of mind….
We:
1. Say we are given two triangles ABC and XYZ with 
AB = XY, AC = XZ, and �A = �X

2. Slide the vertex X onto the vertex A. 

3. Rotate triangle ABC as needed so that ray AC 
�

 
coincides with ray XZ 

�
.

Y

XA

B

C

Z

A = X

Y
Y

X
Z

B

C

Z
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Students work in small groups on this problem, 
and arrive (some with the teacher’s help) at the 
following rather nontrivial solution.

Solution:
1. Through O, the center of the circle c, construct 

a line n perpendicular to line l, and let F be the 
intersection point of l and n.

2. Through the point A, construct a line r paral-
lel to l, and let E be the intersection point of lines 
r and n.

3. Let G be a point on n so that EF = EG.
4. Through G, construct a line k parallel to l, 

and let B be the intersection of line k and circle c. 
5. Let j be the line through B and A, and let C be 

the intersection of lines j and l.
6. Since BCFG is a trapezoid and AE is its mid-

segment (why?), line j is the desired line.

QED
2
 

At this point, the teacher presents a different 
solution in the voice of an imaginary student. She 
tells the students that this same problem was 
solved in a similar way in Ms. Carlson’s geometry 
class and when the discussion of the solution was 
ended, Alec, one of students in this class, said: 

Alec: Nice solution, Ms. Carlson. But I have a dif-
ferent solution. Earlier we learned translation and 
proved that the translation of a line is a line and 
of a circle is a circle. Can we also rotate figures? 

4. Since AC = XZ, the point Z coincides with the 
point C. 

5. Reflect ΔXYZ with respect to its side XZ.
6. Since �A = �X, ray AB coincides with ray XY.
7. Since AB = XY, the point Y coincides with the 
point B.

8. Hence, ΔABC =  � 
ΔXYZ.

Does this make sense to you, Euclid? 
Euclid: Not at all. I understood that somehow you 
made the two triangles coincide, but I didn’t un-
derstand how you did that. The terms slide, rotate, 
and reflect are foreign to me.
We: You are right. We are planning to define these 
terms to you sometime in the future and show 
you more precisely how they can be used to prove 
this congruence criterion. For your information, 
Euclid, we have two additional criteria for congru-
ent triangles. They too will be proven in the future.

Five chapters later, we begin to elicit plane 
transformations. This is done by bringing the 
students to experience the power and efficacy 
of reasoning in terms of plane transformations 
in solving geometry problems. We illustrate this 
approach with a segment from the lesson dealing 
with the half-turn motion, which follows the lesson 
on translation. The lesson opens with the following 
plane-geometry construction problem:

Problem: A line l, circle c, and point A are given. 
Construct a line j through A so that the following 
two conditions hold: (a) j intersects both l and c 
(call these intersections C and B, respectively) and 
(b) AB = AC. 

2The solution is followed by a group project to determine 
the number of solutions to the problem.

B = Y

C = Z

A = X

A = X

C = Z

Y

B
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If yes, rotate line l about the point A 180°; we get 
a line ĺ . If ĺ  intersects circle c in two points, say, M 
and N, then the lines MA and NA are the desired 
lines, simply because MA = AḾ and NA = AŃ .

Teacher: Wow! Let’s clarify what it means to 
rotate a line 180° about a point.

When we rotate a point X 180° about a point A, 
we get a point X ,́ where X, A, X´ are collinear and 
XA=X Á.

Rotating a line l 180° about a point A means 
rotating each of the points of the line 180° about a 
point A. We get a line ĺ .

Bravo, Alec.

ACTIVITY: PREDICT EUCLID’S QUESTIONS 
ABOUT ALEC’S SOLUTION AND ANSWER THEM

The kinds of questions students are expected 
to raise in the name of Euclid are similar to those 
Euclid raised in the previous lesson on transla-
tion (see below). As with the half-turn motion, the 
translation motion too emerged from a solution 
to a geometry construction problem involving 
a translation of a circle. After the definition of 
translation was stated to Euclid, the following 
conversation ensued.

nth Conversation with Euclid3

Euclid: From what you have said so far, I conclude 
that you are claiming that the translation of a circle 
along a given vector is a circle congruent to the 
original circle—why?
We: Mmm… good question, Euclid. It is so obvious 
to us, but we understand why you need a proof for 

this fact. Give us some time to think how to answer 
your question.

ACTIVITY: HOW SHOULD WE RESPOND TO 
EUCLID? 

Euclid: While you were thinking how to answer my 
question, I came up with an answer of my own.
1. Let s be a circle with center O and radius r, and 
let v be any vector.
2. Translate s and O a distance |v| along the vector 
v, to get ś and Ó , respectively. I will show that the 
distance of any point on ś  from Ó  is r.
3. Let Ḱ  be any point on ś . Ḱ  is the translation of 
a point K on s.
By now you perhaps lost me. Go ahead and do your 
drawings, so you can follow what I say.
We: Thank you, Euclid, for being considerate.
We: We are ready.

Euclid:
4. Consider the quadrilateral OÓ Ḱ K. By the 
definition of translation, we have OÓ  ||KḰ ||v and 
OÓ =KḰ =|v|, and therefore, OÓ Ḱ K is a paral-
lelogram.
5. Hence Ó Ḱ =OK=r.
QED 

ACTIVITY: IS EUCLID’S PROOF COMPLETE?

Finally, at the end of the chapter on plane trans-
formations, we return to the 5th Conversation with 
Euclid to close what was left open by proving the 
congruence criteria using rigid motions.
Characteristics of the Nonstandard Approach
The nonstandard approach is intended to help 
students realize the need to state basic assertions 
about our idealized physical reality (axioms) as 
well as basic theorems, which they then use to 
solve geometry problems. These problems are 
designed to lead the students to derive more facts 
and theorems in a way that is logically coherent. 
The students are naturally led to make their argu-
ments and definitions increasingly precise as time 
goes on so that they can effectively communicate 
with Euclid. The sample of lesson segments we 
have just presented raises several questions  
concerning the Conversations with Euclid unit and 
its implementation.

3The exact number of this conversation is yet to be de-
termined. 
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isosceles causes the angles opposite its equal sides 
to be congruent. In other words, the focus is more 
on form than on content.

How Does the Conversations with Euclid Unit 
Deal with the Role of Figures in Geometry? The 
conversations with a fictitious “alien” who is de-
void of visual, kinesthetic, and haptic perceptions 
has proven to be enormously effective in neces-
sitating the role of figures in geometry proofs, 
namely, that the geometric figures we draw on a 
sheet of paper and incorporate in our proofs are 
mere signs of ideal spatial perceptions which can 
only be communicated with Euclid by means of 
agreements (axioms).

 Beyond the realization of the need to define 
objects accurately and objectively and justify as-
sertions logically, we want students to use figures 
to generate conjectures. This is critical because 
we do not want Euclid’s constraints to limit the 
students’ intuition and observations of their physi-
cal surroundings. The separation between Euclid’s 
images and students’ own images helps to combat 
one of the most prevalent difficulties students 
have with geometry proofs: namely, student’s reli-
ance on actual figures in justifying mathematical 
assertion [8], [10], e.g., a geometric relation is true 
because it looks so.

What Is the Nature of the Intellectual Need for 
the Conversations with Euclid? The intellectual 
need underlying the Conversations with Euclid 
unit is primarily, but not limited to, the need for 
communication,4 which comprises two reflexive 
acts: formulating and formalizing. Formulating is 
the act of transforming strings of spoken language 
into mathematical language. Formalizing is the act 
of externalizing the exact intended meaning of an 
idea or a concept or the logical basis underlying 
an argument. The two acts are reflexive in that 
as one formalizes a mathematical idea, it is often 
necessary to formulate it, and, conversely, as one 
formulates an idea, one often encounters a need 
to formalize it. The preconceptualization that 
orients us humans to these acts when we learn 
mathematics is the act of conveying, exchang-
ing, and defending ideas by means of a spoken 
language and gestures, which are defining features 
of humans.

What Is the Context of the Conversations with 
Euclid? Typically, the conversations in the unit are 
presented on an overhead projector by the teacher 
or handed out on paper to the students. How-
ever, their distribution is carried out strategically 
to avoid introduction of material prematurely, 
before the students have fully realized the need 
for an idea. In the first few lessons when solving 

What Can Be Assumed about Euclid’s Knowl-
edge? Speaking to Euclid, an “alien” who does not 
share our taken-as-shared meanings may seem 
confusing for students, since it is not always 
clear what can be assumed about his knowledge 
and what might be considered a fair assumption. 
For many years I have been using the “game” of 
conversing with an “alien” as a pedagogical tech-
nique to advance students’ ability to formulate 
and formalize mathematical ideas in geometry. In 
each case, I find the experience pleasantly surpris-
ing. Not only do students enthusiastically engage 
in the “game” but also very quickly—in a lesson 
or two—develop a clear sense about “the rules of 
the game”, that this is a “mathematical game”, 
not a “language arts game”. For example, students 
seldom ask whether Euclid knows what is meant 
by terms such as “true”, “false”, “understand”, 
“sorry”, or any of the kinds of natural language 
phrases appearing in the above conversations 
with Euclid. Students do, however, often raise 
questions about Euclid’s knowledge of certain 
geometric facts known to them from previous 
classes (e.g., “The sum of the angles in a triangle 
being 180°”). What is particularly pleasing is that 
students often raise questions of a subtle nature, 
for example: Does Euclid know what is meant by 
“different sides of a line”? “a point between two 
points”? “direction”? “algebra”? etc.

What Is the Underlying Structure of the Conver-
sations with Euclid Unit? The issue of structure is 
particularly critical in the case of geometry. It is 
perhaps the only place in high school mathemat-
ics where a (relatively) complete and rigorous 
mathematical structure can be taught. Deductive 
geometry can be treated in numerous ways and at 
different levels of rigor. The Conversations with 
Euclid unit uses Euclid’s Elements as a framework. 
In a program consistent with this framework, 
subtle concepts and axioms, such as those related 
to “betweenness” and “separation”, are dealt with 
intuitively, but the progression from definitions 
and axioms to theorems and from one theorem to 
the next is coherent, logical, and exhibits a clear 
mathematical structure. Furthermore, the unit 
sequences its lessons so that neutral geometry—a 
geometry without the Parallel Postulate—precedes 
Euclidean geometry—a geometry with the Parallel 
Postulate.

Another central theme concerning structure is 
that the Conversations with Euclid unit puts more 
emphasis on the form of reasoning than on the 
content to which the reasoning is applied. This is 
done by continually drawing students’ attention to 
the cause of facts—what makes a fact to be the way 
it is—rather than to the fact itself. By this, we try 
to create and establish the norm that a claim such 
as “In an isosceles triangle the angles opposite 
the equal sides are congruent” is less interesting 
than understanding how the fact that a triangle is 

4The need for communication is one of five intellectual 
needs (need for certainty, need for causality, need for 
communication, need for computation, and need for 
structure), which characterize mathematical practice 
(see [9]).
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protested and expressed their wish to return to 
their conversations with Euclid.
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geometry problems in class, the teacher plays the 
role of Euclid, but gradually the students take on 
his persona. 

Final Observation
The idea of Conversations with Euclid was cre-
ated years ago when I realized that my students 
in college geometry courses had serious difficul-
ties dealing with geometric properties outside 
their own imaginative space. For example, they 
invoked imageries of “betweenness”, “infinite 
length”, “order”, etc., in finite geometries devoid 
of these properties. The Conversations with Euclid 
technique was instrumental in helping students 
separate their own imageries from those implied 
by the geometry at hand.

Teachers who participated in the pilot experi-
ment with the Conversations with Euclid unit found 
it effective. Here are several of their responses.

Teacher A: “The point of geometry (and all other 
math) is to improve our understanding and deduc-
tive reasoning. From the lessons we received, this 
goal is obtainable. Because we started with noth-
ing and were able to prove so much, it allowed me 
to use logic and reasoning to deductively prove 
many geometrical theorems I never previously 
understood.”

Teacher B: “I always knew that the way geometry 
is traditionally taught didn’t give students the op-
portunity to reason deductively. We typically move 
through endless theorems and expect students 
to apply them algebraically. However, the “why” 
is often left out. Students are terrible at proofs 
because we never teach ways of thinking and rea-
soning. I now have a better idea of how to teach 
deductive reasoning.”

Other teachers have been using the Conversa-
tions with Euclid unit in their own classes, and have 
reported success.

Teacher C reported that her students were so 
intrigued by the Conversations with Euclid game 
that they composed a rap song about his perceived 
personality.

Teacher D reported the results of a semi- 
formal study she conducted to compare students’ 
achievement on three types of curricula in her 
school: the Conversations with Euclid unit (137 
students), a common district geometry unit (180 
students), and an accelerated geometry unit (91 
students). All the students took the same external 
district geometry end-of-course (EOC) exam at 
the end of fall of 2012. The EOC tested thirteen 
standards. Students with the Conversations with 
Euclid unit performed significantly better than 
those with the common geometry unit and about 
the same or better than those in the accelerated 
geometry curriculum.

When Teacher D had to resort to the common 
geometry unit in the spring of 2013 due to the 
institution’s curricular constraints, her students 


