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Abstract Two questions are on the mind of many

mathematics educators; namely: What is the mathematics

that we should teach in school? and how should we teach

it? This is the second in a series of two papers addressing

these fundamental questions. The first paper (Harel, 2008a)

focuses on the first question and this paper on the second.

Collectively, the two papers articulate a pedagogical stance

oriented within a theoretical framework called DNR-based

instruction in mathematics. The relation of this paper to the

topic of this Special Issue is that it defines the concept of

teacher’s knowledge base and illustrates with authentic

teaching episodes an approach to its development with

mathematics teachers. This approach is entailed from

DNR’s premises, concepts, and instructional principles,

which are also discussed in this paper.

Keywords DNR � Way of understanding �
Way of thinking � Duality principle � Necessity principle �
Repeated reasoning principle � Intellectual need �
Psychological need � Teacher’s knowledge base

1 Introduction

This is the second in a series of two papers, the goal of

which is to contribute to the debate on a pair of questions

that are on the mind of many mathematics educators—

teachers, teacher leaders, curriculum developers, and

researchers who study the processes of learning and

teaching—namely:

1. What is the mathematics that we should teach in

school?

2. How should we teach it?

Clearly, a pair of papers is not sufficient to address

these colossal questions, which are inextricably linked to

other difficult questions—about student learning, teacher

knowledge, school culture, societal need, and educational

policy, to mention a few. My goal in these two publi-

cations is merely to articulate a pedagogical stance on

these two questions. The stance is not limited to a par-

ticular mathematical area or grade level; rather, it

encompasses the learning and teaching of mathematics in

general.

This stance is oriented within a theoretical framework,

called DNR-based instruction in mathematics (DNR, for

short). DNR can be thought of as a system consisting of

three categories of constructs: premises—explicit assump-

tions underlying the DNR concepts and claims; concepts—

constructs defined and oriented within these premises; and

claims—statements formulated in terms of the DNR con-

cepts, entailed from the DNR premises, and supported by

empirical studies. These claims include instructional

principles: assertions about the potential effect of teaching

actions on student learning. Not every instructional prin-

ciple in the system is explicitly labeled as such. The system

states three foundational principles: the duality principle,

the necessity principle, and the repeated-reasoning prin-

ciple; hence, the acronym DNR. The other principles in the

system are derivable from and organized around these three

principles. Figure 1 depicts this structure at this level of

elaboration. Additional figures with further elaboration will

be presented as the paper unfolds.
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This paper begins, in Sect. 1, with DNR premises.

Section 2 is a synopsis of Paper I (Harel, 2008a).1 The

reader is strongly encouraged to read Paper I before read-

ing this paper. The two papers correspond roughly to the

above two questions: Paper I focuses on elements of

mathematics curricula, and this paper on elements of

mathematics teaching. However, since one’s approach to

teaching necessarily depends on one’s views of learning,

this paper devotes a portion of its space to the DNR’s

definition of learning. Learning is discussed in Sect. 3.

What does all this have to do with the topic of this Special

Issue: empirical research on mathematics teachers and

their education? The answer to this question will be

become clearer in Sects. 4 and 5. Section 4 formulates the

three DNR foundational instructional principles—duality,

necessity and repeated reasoning. Section 5 defines the

concept of teacher’s knowledge base in terms of the ele-

ments of learning, teaching, and curriculum laid out in the

preceding sections and in Paper I, and it also illustrates

DNR’s approach to advancing teachers’ knowledge base.

The paper concludes, in Sect. 6, with a summary and

questions entailed from the conceptual framework put forth

in the preceding sections.

2 DNR’s premises

A major effort was made to state the DNR underlying

assumptions explicitly. These assumptions, called DNR

premises, were not conceived a priori before DNR was

formulated, but instead emerged in the process of reflection

on and exploration of justifications for the DNR claims.

Collectively, these premises underlie DNR’s philosophy of

mathematics and the learning and teaching of mathematics.

DNR has eight premises. They are loosely organized in four

categories:

1. Mathematics

• Mathematics: Knowledge of mathematics consists

of all ways of understanding and ways of thinking

that have been institutionalized throughout history.

2. Learning

• Epistemophilia: Humans—all humans—possess

the capacity to develop a desire to be puzzled

and to learn to carry out mental acts to solve the

puzzles they create. Individual differences in this

capacity, though present, do not reflect innate

capacities that cannot be modified through ade-

quate experience.

• Knowing: Knowing is a developmental process

that proceeds through a continual tension between

assimilation and accommodation, directed toward a

(temporary) equilibrium.

• Knowing-Knowledge Linkage: Any piece of

knowledge humans know is an outcome of their

resolution of a problematic situation.

• Context Dependency: Learning is context

dependent.

3. Teaching

• Teaching: Learning mathematics is not spontane-

ous. There will always be a difference between

what one can do under expert guidance or in

collaboration with more capable peers and what he

or she can do without guidance.

4. Ontology

• Subjectivity: Any observations humans claim to

have made is due to what their mental structure

attributes to their environment.

• Interdependency: Humans’ actions are induced and

governed by their views of the world, and,

conversely, their views of the world are formed

by their actions.

As the reader might have recognized, these premises—

with the exception of the Mathematics Premise, which has

been discussed broadly in Harel (2008) and in Paper I—are

taken from or based on known theories. Briefly, the Epis-

temophilia Premise follows from Aristotle (Lawson-

Tancred, 1998); the Adaptation Premise is the nucleus of

Piaget’s theory of equilibration (Piaget, 1985); the Learn-

ing-Knowledge Linkage Premise, too, is inferable from

Piaget, and is consistent with Brousseau’s claim that for

every piece of knowledge there exists a fundamental situ-

ation to give it an appropriate meaning (Brousseau, 1997);

DNR

Premises Concepts Claims

Instructional Principles 

Duality

Necessity

Repeated-reasoning

Fig. 1 DNR structure: elaboration 1

1 Throughout this paper, the reference Paper I rather than Harel

(2008a) will be used.

894 G. Harel

123



the Context Dependency Premise is consistent with modern

cognitive theories of knowledge acquisition, according to

which learning is contextualized; the Teaching Premise

derives from Vygotsky’s (1978) known zone of proximal

development (ZPD) idea; the Subjectivity Premise and the

Interdependency Premise follow from both Piaget’s con-

structivism theory (see, for example, von Glasersfeld,

1983) as well as from information processing theories (see,

for example, Chiesi, Spilich, & Voss, 1979; Davis, 1984).

Why are these premises needed? DNR is a conceptual

framework for the learning and teaching of mathematics.

As such, it needs lenses through which to see the realities

of the different actors involved in these human activities—

mathematicians, students, teachers, school administrators,

etc.—particularly the realities of the students as learners in

different stages in their conceptual development. DNR also

needs a stance on the nature of the targeted knowledge to

be taught—mathematics—and of the learning and teaching

of this knowledge.

Starting from the end of the premises list, the two

Ontology Premises—Subjectivity and Interdependency—

orient our interpretations of the actions and views of stu-

dents and teachers. Implications of the ontological positions

expressed by these premises to mathematics education are

not new. Scholars such as von Glasersfeld, Leslie Steffe,

Patrick Thompson, Paul Cobb, Jere Confrey, and Ed Du-

binsky were notable pioneers in offering and implementing

research and curricular programs rooted in these positions

(see, for example, Steffe, Cobb, & Glasersfeld, 1988; Steffe

& Thompson, 2000; Confrey, 1990; Dubinsky, 1991).

These scholars articulated essential implications to mathe-

matics curriculum and instruction: that students’ realities

are their actual experiences, not what we speak of as

observers; that when we describe our observations of stu-

dents’ experiences we merely offer a model describing our

conception of what we have observed; that for these models

to be effective pedagogically, they should include students’

actions—what we see and hear—as well as their possible

causes. All these elements are integral parts of DNR. As was

discussed in Harel (2008), this subjective stance is already

present in the definitions of ‘‘way of understanding’’ and

‘‘way of thinking,’’ and hence in the conceptualization of

the Mathematics Premise.

The Mathematics Premise comprises its own category; it

concerns the nature of the mathematics knowledge—the

targeted domain of knowledge to be taught—by stipulating

that ways of understanding and ways of thinking are the

constituent elements of this discipline, and therefore

instructional objectives must be formulated in terms of

both these elements, not only in terms of the former, as

currently is largely the case (see Paper I).

Each of the four Learning Premises—Epistemophilia,

Knowing, Knowing-Knowledge Linkage, and Context

Dependency—attend to a different aspect of learning: The

Epistemophilia Premise is about humans’ propensity to

know, as is suggested by the term ‘‘epistemophilia:’’ love

of episteme. Not only do humans desire to solve puzzles in

order to construct and impact their physical and intellectual

environment, but also seek to be puzzled. The term ‘‘puz-

zle’’ should be interpreted broadly: it refers to problems

intrinsic to an individual or community, not only to rec-

reational problems, as the term is commonly used. Such

problems are not restricted to a particular category of

knowledge, though here we are solely interested in the

domain of mathematics. The Epistemophilia Premise also

attends to another significant issue. It claims that all

humans are capable of learning if they are given the

opportunity to be puzzled, create puzzles, and solve puz-

zles. While it assumes that the propensity to learn is innate,

it rejects the view that individual differences reflect innate

basic capacities that cannot be modified by adequate

experience (social, emotional, psychological, and

intellectual).

The Knowing Premise is about the mechanism of

knowing: that the means—the only means—of knowing is

a process of assimilation and accommodation. A failure to

assimilate results in a disequilibrium, which, in turn, leads

the mental system to seek equilibrium, that is, to reach a

balance between the structure of the mind and the envi-

ronment. In essence, this premise is the basis for the

position, held by many scholars (e.g. Brownell, 1946;

Davis, 1992; Hiebert, 1997; Thompson, 1985), that prob-

lem solving is the only means of learning.

The Context Dependency Premise is about contextuali-

zation of learning. The premise does not claim that learning

is entirely dependent on context—that knowledge acquired

in one context is not transferrable to another context, as

some scholars (Lave, 1988) seem to suggest. This claim,

which implies, for example, that abstraction is of little use,

is obviously not true, as is convincingly argued by

Anderson, Reder, & Simon (1996). Instead, the Context

Dependency Premise holds that ways of thinking belonging

to a particular domain are best learned in the context and

content of that domain. Consider, for example, reifica-

tion—the way of thinking where one reconceptualizes

processes as conceptual entities, objects the mental system

can reason about in a direct way (Greeno, 1980).2 Begin-

ning at infancy and throughout life, humans form

conceptual entities through interaction with their physical

and social environments. They effortlessly reason directly

about perceptual and social concepts, such as ‘‘texture’’ and

2 Reification is a way of thinking because it is a cognitive

characteristic of the mental act of abstracting. In Piaget’s terms,

reification is one kind of reflective abstraction. (For an excellent

analysis of Piaget’s notion of abstraction, see Dubinsky, 1991).
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‘‘color’’ and ‘‘friendship’’ and ‘‘justice,’’ directly without a

need to unpack or replay the experiences that led to their

construction. The ease in which reification is applied in

one’s daily life does not, however, guarantee its successful

application in other domains, particularly mathematics. It

has been well documented that reifying processes into

conceptual entities in mathematics is difficult. For exam-

ple, reconceptualizing the concept of function from a

mapping process into an object—as an element of a group

or a vector space, for example—is difficult even for college

students (Dubinsky, 1991; Sfard, 1991); reconceptualizing

the concept of fraction from a multiplicative relation into a

single number is difficult for middle-grade students (Behr,

Wachsmuth, & Post, 1984); and reconceptualizing the

process of counting into a number name is far from being

trivial for early-grade students (Steffe, von Glasersfeld,

Richards, & Cobb, 1983).

Context dependency exists even within subdisciplines of

mathematics, in that each mathematical content area is

characterized by a unique set of ways of thinking (and

ways of understanding). For example, the set of ways of

thinking that characterizes combinatorics is different from

that which characterizes topology. Even within the same

domain, say Euclidian geometry, the ways of thinking that

characterize plane geometry, for example, are not identical

to those that characterize spatial geometry.

Finally, the Teaching Premise asserts that expert guid-

ance is indispensible in facilitating learning of

mathematical knowledge. This premise is particularly

needed in a framework oriented within a constructivist

perspective, like DNR, because one might minimize the

role of expert guidance in learning by (incorrectly) infer-

ring from such a perspective that individuals are

responsible for their own learning or that learning can

proceed naturally and without much intervention (see, for

example, Lerman, 2000). The Teaching Premise rejects this

claim, and, after Vygotsky, insists that expert guidance in

acquiring scientific knowledge—mathematics, in our

case—is indispensable to facilitate learning.3 The Teaching

Premise leads naturally to questions concerning the nec-

essary knowledge that an expert guide—a teacher—must

possess and the nature of effective teaching practices that

can bring about learning. The DNR constituent elements of

teaching (Sect. 4) coupled with the definition of teacher’s

knowledge base (Sect. 5) attend to these issues.

Figure 2 adds to Fig. 1 the eight premises of DNR.

3 Constituent elements of mathematics curriculum:

a synopsis of paper I

Paper I addresses the question, ‘‘What is the mathematics

that we should teach in school?’’ DNR’s position on this

question, based on its first premise, is that the constituent

elements of mathematics, and therefore of desirable math-

ematics curricula, are ways of understanding and ways of

thinking. A way of understanding is a product of a mental

act, whereas a way of thinking is a characteristic of ways of

understanding associated with that act. The triad ‘‘mental

act, way of understanding, and way of thinking’’ is central in

DNR. It is a generalization of the triad ‘‘proving, proof, and

proof scheme,’’ which emerged in investigations concerning

the learning and teaching of mathematical proof (see, for

example, Harel & Sowder, 1998, 2008c). The generaliza-

tion was necessitated in part by the realization that the

processes of learning and teaching mathematical proof

involve numerous mental acts, such as ‘‘interpreting,’’

‘‘connecting,’’ ‘‘modeling,’’ ‘‘generalizing,’’ ‘‘abstracting,’’

‘‘searching,’’ and ‘‘symbolizing’’ and so attention to proving

alone is insufficient to identify and communicate classroom

and clinical observations. Examples of categories of ways of

thinking include problem-solving approaches, proof

schemes, and beliefs about mathematics. Of these, the proof

schemes category was taxonomized on the basis of students’

work and historical development (Harel and Sowder, 1998).

The taxonomy consists of three classes—external convic-

tion, empirical, and deductive—each with subclasses.

In a nutshell, Paper I argues that the answer to the first

question in the opening of this paper should be driven by

desirable4 ways of understanding and ways of thinking, not

only by the former, as is currently the case. Section 4 deals

with pedagogical tools needed for effectively teaching such

curricula. These tools hinge, in part, upon DNR’s definition

of learning, which is discussed in the next section.

4 Constituent elements of mathematics learning

One’s view of learning might be informed and formed by a

scholarly-based theory—such as behaviorism, information

processing, and constructivism—or by informal experi-

ence. In DNR, the definition of mathematics learning

follows from the DNR premises. It follows from the

Learning-Knowledge Linkage Premise that problem solv-

ing is the means—the only means—to learn. When one

encounters a problematic situation, one necessarily expe-

riences phases of disequilibrium, often intermediated by

phases of equilibrium. Disequilibrium, or perturbation, is a
3 The potential inconsistency between Piaget and Vygotsky regarding

the source of meaning, which according to Piaget it comes from the

individual’s actions and operations and according to Vygotsky from

communication among individuals, will not be addressed in this

paper.

4 For the particular meaning of the term ‘‘desirable,’’ see Harel

(2008b).
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state that results when one encounters an obstacle. Its

cognitive effect is that it ‘‘forces the subject to go beyond

his current state and strike out in new directions’’ (Piaget,

1985, p. 10). Equilibrium is a state when one perceives

success in removing such an obstacle. In Piaget’s terms, it

is a state when one modifies her or his viewpoint

(accommodation) and is able, as a result, to integrate new

ideas toward the solution of the problem (assimilation). But

what constitutes perturbation? More relevant to this paper,

what constitutes perturbation in mathematical practice?

DNR defines perturbation in terms of two types of human

needs: intellectual need and psychological need, both of

which are discussed below. DNR’s definition of learning,

thus, incorporates these two needs and, consistent with the

Subjectivity Premise, it also incorporates the knowledge

currently held and newly produced during the learning

process. Further, since our interest is restricted to mathe-

matics learning, this knowledge is defined in terms of ways

of understanding and ways of thinking, by the Mathematics

Premise. Thus, DNR’s definition of learning is:

Learning is a continuum of disequilibrium–equili-

brium phases manifested by (a) intellectual and

psychological needs that instigate or result from these

phases and (b) ways of understanding or ways of

thinking that are utilized and newly constructed

during these phases.

Harel (2008b) and Paper I discuss in length the two

notions way of understanding and way of thinking. In this

section we discuss the other two notions appearing in this

definition: intellectual need and psychological need.

Let K be a piece of knowledge possessed by an indi-

vidual or community. By the Knowing-Knowledge

Linkage Premise, there exists a problematic situation S out

of which K arose. S (as well as K) is subjective, by the

Subjectivity Premise, in the sense that it is a perturbational

state resulting from an individual’s encounter with a situ-

ation that is incompatible with, or presents a problem that

is unsolvable by, her or his current knowledge. Such a

problematic situation S, prior to the construction of K, is

referred to as an individual’s intellectual need: S is the

need to reach equilibrium by learning a new piece of

knowledge.5 Perturbational states do not necessarily lead to

knowledge construction—a person can remain in a state of

disequilibrium either due to inability or lack of motivation.

Here, however, we are talking about the case where a

perturbational state S has led to the construction of K. In

this case, if the individual also sees how K resolves S, then

we say that the individual possesses an epistemological

justification for the creation of K. Thus, epistemological

justifications concern the genesis of knowledge, the per-

ceived reasons for its birth in the eyes of the learner.

There is often confusion between intellectual need and

motivation. The two are related but are fundamentally

DNR

Premises Concepts Claims

Instructional Principles

Duality

Necessity

Repeated-reasoning

Mathematics

Learning

Teaching

Ontology

Epistemophilia

Knowing

Knowing-Knowledge Linkage

Subjectivity

Interdependency

Context Dependency

Fig. 2 DNR structure:

elaboration 2

5 There more to say about the ‘‘intellectual’’ part of ‘‘intellectual

need.’’ Historical and epistemological analyses led to five categories

of intellectual needs, which are briefly characterized in Sect. 6.
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different. While intellectual need belongs to epistemology,

motivation belongs to psychology. Intellectual need has to

do with disciplinary knowledge being born out of people’s

current knowledge through engagement in problematic

situations conceived as such by them. Motivation, on the

other hand, has to do with people’s desire, volition, inter-

est, self determination, and the like. Indeed, before one

immerses oneself in a problem, one must desire, or at least

be willing, to engage in the problem, and once one has

engaged in a problem, often persistence and perseverance

are needed to continue the engagement. These character-

istics are manifestations of psychological needs:

motivational drives to initially engage in a problem and to

pursue its solution. The existence of these needs is implied

from the Epistemophilia Premise, which asserts that people

desire to solve problems and to look for problems to

solve—they do not passively wait for disequilibrium!

Psychological needs, thus, belong to the field of moti-

vation, which addresses conditions that activate and

boost—or, alternatively, halt and inhibit—learning in gene-

ral. In contrast, intellectual needs refer to the epistemology

of a particular discipline with an individual or community

from the knowledge they currently hold. Of course, as

human behaviors, the two categories of needs are related; in

fact, they complement each other: On the one hand,

knowledge of a discipline always stems from problematic

situations unique to that discipline and understood as such

by an individual or community studying the discipline. On

the other hand, in suitable physical, emotional, and social

environments, humans are ready to engage in these prob-

lematic situations and persevere in pursuing their solutions.

Research in mathematics education has offered useful

models for learning trajectories of various mathematical

concepts and ideas, but, as with DNR, psychological needs

have not been a major focus. Examples of such models

include: Fischebein’s (1985) intuitive models for the con-

cepts of multiplication and division; Tournaire’s (1986)

model for the concept of proportionality; Dubinsky’s

action-process-object-schema model for the concept of

function (E. D. Dubinsky & McDonald, 2001); Schoen-

feld’s (1992) model for thinking mathematically. However,

relative to the broad scope of our definition of learning,

these models are largely partial. This is expected due to the

enormous empirical and theoretical difficulties in building

models that incorporate phases of disequilibrium-equilib-

rium, their utilized or resultant ways of understanding and

ways of thinking, and the intellectual and psychological

needs that result from and instigate the various phases.

Such comprehensive models, however, are needed and

hopefully will be constructible in the future.

Figure 3 depicts the DNR concepts discussed this far.

5 Constituent elements of mathematics teaching

This section discusses DNR’s three foundational instruc-

tional principles: duality, necessity, and repeated reasoning.

The duality principle deals with the developmental

DNR

Premises Concepts Claims 

Instructional Principles

Duality

Necessity

Repeated-reasoning

Mathematics

Learning

Teaching

Ontology

Epistemophilia

Knowing

Knowing-Knowledge Linkage

Subjectivity

Interdependency

LearningMental Act 

Way of Understanding

Way of Thinking

Proof scheme ProofProving

Context Dependency

Fig. 3 DNR structure:

elaboration 3
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interdependency between ways of understanding and ways

of thinking; the necessity principle with students’ intellec-

tual need; and the repeated reasoning principle with

internalization, organization, and retention of knowledge.

As we will see, the three principles are strongly linked. A

single principle, considered individually and separately from

the other two principles, is likely to be of lesser pedagogical

value than if is considered in the context of the other two.

5.1 The duality principle

Let us begin by taking a closer look at the formation of the

empirical proof scheme (see Paper I). Recall that a person

with this scheme proves—that is, removes doubts about the

truth of an assertion—inductively: by relying on evidence

from examples of direct measurements of quantities, sub-

stitutions of several numbers in algebraic expressions, etc,

or perceptually: by relying on evidence from physiological

senses such as visual or tactile perceptions. Research has

shown that the empirical proof scheme is prevalent and

persistent among students at all grade levels (Chazan,

1993; Goetting, 1995; Harel & Sowder, 2008). What might

be causing the dominance of this scheme?

Students do not come to school as blank slates, ready to

acquire knowledge independently of what they already

know (Piaget, 1952, 1969, 1973, 1978). Rather, what stu-

dents know now impacts what they will know in the future.

This is true for all ways of understanding and ways of

thinking associated with any mental act; the mental act of

proving is no exception. In everyday life and in science, the

means of justification available to humans are largely

limited to empirical evidence. Since early childhood, when

we seek to justify or account for a particular phenomenon,

we are likely to base our judgment on similar or related

phenomena in our past (Anderson, 1980). Given that the

number of such phenomena in our past is finite, our judg-

ments are typically empirical. Through such repeated

experience, which begins in early childhood, our hypo-

thesis evaluation becomes dominantly empirical; that is,

the proofs that we produce to ascertain for ourselves or to

persuade others become characteristically inductive or

perceptual. If, during early grades, our judgment of truth in

mathematics continues to rely on empirical considerations,

the empirical proof scheme will likely dominate our rea-

soning in later grades and more advanced classes, as

research findings clearly show (Harel & Sowder, 2008).

While unavoidable, the extent of the dominance of the

empirical proof scheme on people is not uniform. Children

who are raised in an environment where sense making is

encouraged and debate and argumentation are an integral

part of their social interaction with adults are likely to have

a smoother transition to deductive reasoning than those

who are not raised in such an environment.

A simple, yet key, observation here is this: the proofs

children produce to prove assertions and account for phe-

nomena in everyday life impact the kind and robustness of

the proof schemes they form. Proofs, as was explained

earlier, are ways of understanding associated the mental act

of proving, and proof schemes are ways of thinking asso-

ciated with the same act. Hence, a generalization of this

observation is: for any mental act, the ways of under-

standing one produces impact the quality of the ways of

thinking one forms.

Of equal importance is the converse of this statement;

namely: For any mental act, the ways of thinking one has

formed impact the quality of the ways of understanding one

produces. The latter statement is supported by observations

of students’ mathematical behaviors, for example, when

proving. As was indicated earlier, the empirical proof

scheme does not disappear upon entering school, nor does

it fade away effortlessly when students take mathematics

classes. Rather, it continues to impact the proofs students

produce. It takes enormous instructional effort for students

to recognize the limits and role of empirical evidence in

mathematics and begin to construct alternative, deduc-

tively-based proof schemes. Even mathematically able

students are not immune from the impact of the empirical

proof scheme, as was demonstrated by Fischbein & Kedem

(1982). Students’ past mathematical experience, however,

plays a critical role in the extent to which their empirical

proof schemes impact the proofs they produce.

This analysis points to a reciprocal developmental

relationship between ways of understanding and ways of

thinking, which is expressed in the following principle:

The Duality Principle: Students develop ways of

thinking through the production of ways of under-

standing, and, conversely, the ways of understanding

they produce are impacted by the ways of thinking

they possess.

For easier reference, the first statement of the Duality

Principle is denoted by TU (indicating that ways of

understanding serve a basis for the development of ways

of thinking), and its converse by UT (indicating that ways

of thinking serve a basis for the production of ways of

understanding).

The analysis preceding the Duality Principle, and hence

the principle itself, is implied from the Interdependency

Premise. To see this, one only need to recognize that a

person’s ways of thinking are part of her or his view of the

world, and that a person’s ways of understanding are

manifestations of her or his actions. Specifically, the UT

statement is an instantiation of the premise’s assertion that

humans’ actions are induced and governed by their views

of the world, whereas the TU statement is an instantiation of

the premise’s assertion that humans’ views of the world are
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formed by their actions. Furthermore, the Context Depen-

dency Premise adds a qualification to the TU statement:

ways of thinking belonging to a particular discipline best

develop from or are impacted by ways of understanding

belonging to the same discipline.

5.2 The necessity principle

There is a lack of attention to students’ intellectual need in

mathematics curricula at all grade levels. Consider the

following two examples: After learning how to multiply

polynomials, high-school students typically learn tech-

niques for factoring (certain) polynomials. Following this,

they learn how to apply these techniques to simplify

rational expressions. From the students’ perspective, these

activities are intellectually purposeless. Students learn to

transform one form of expression into another form of

expression without understanding the mathematical pur-

pose such transformations serve and the circumstances

under which one form of expression is more advantageous

than another. A case in point is the way the quadratic

formula is taught. Some algebra textbooks present the

quadratic formula before the method of completing the

square. Seldom do students see an intellectual purpose for

the latter method—to solve quadratic equations and to

derive a formula for their solutions—rendering completing

the square problems alien to most students (see Harel,

2008a for a discussion on a related way of thinking:

algebraic invariance). Likewise, linear algebra textbooks

typically introduce the pivotal concepts of ‘‘eigenvalue,’’

‘‘eigenvector,’’ and ‘‘matrix diagonalization’’ with state-

ments such as the following:

The concepts of ‘‘eigenvalue’’ and ‘‘eigenvector’’ are

needed to deal with the problem of factoring an

n 9 n matrix A into a product of the form XDX-1,

where D is diagonal. The latter factorization would

provide important information about A, such as its

rank and determinant.

Such introductory statements aim at pointing out to the

student an important problem. While the problem is intel-

lectually intrinsic to its poser (a university instructor), it is

likely to be alien to the students because a regular under-

graduate student in an elementary linear algebra course is

unlikely to realize from such statements the nature of the

problem indicated, its mathematical importance, and the

role the concepts to be taught (‘‘eigenvalue,’’ ‘‘eigenvec-

tor,’’ and ‘‘diagonalization’’) play in determining its

solution. What these two examples demonstrate is that the

intellectual need element in (the DNR definition of)

learning is largely ignored in teaching. The Necessity

Principle attends to the indispensability of intellectual need

in learning:

The Necessity Principle: For students to learn the

mathematics we intend to teach them, they must have

a need for it, where ‘need’ here refers to intellectual

need.

5.3 The repeated reasoning principle

Even if ways of understanding and ways of thinking are

intellectually necessitated for students, teachers must still

ensure that their students internalize, retain, and organize

this knowledge. Repeated experience, or practice, is a

critical factor in achieving this goal, as the following

studies show: Cooper (1991) demonstrated the role of

practice in organizing knowledge. DeGroot (1965) con-

cluded that increasing experience has the effect that

knowledge becomes more readily accessible: ‘‘[knowl-

edge] which, at earlier stages, had to be abstracted, or even

inferred, [is] apt to be immediately perceived at later

stages.’’ (pp. 33–34). Repeated experience results in flu-

ency, or effortless processing, which places fewer demands

on conscious attention. ‘‘Since the amount of information a

person can attend to at any one time is limited (Miller,

1956), ease of processing some aspects of a task gives a

person more capacity to attend to other aspects of the task

(LaBerge and Samuels, 1974; Schneider and Shiffrin,

1977; Anderson, 1982; Lesgold et al., 1988)’’ (quote from

Bransford, Brown, & Cocking, 1999, p. 32).

The emphasis of DNR-based instruction is on repeated

reasoning that reinforces desirable ways of understanding

and ways of thinking. Repeated reasoning, not mere drill

and practice of routine problems, is essential to the process

of internalization, where one is able to apply knowledge

autonomously and spontaneously. The sequence of prob-

lems given to students must continually call for thinking

through the situations and solutions, and problems must

respond to the students’ changing intellectual needs. This is

the basis for the repeated reasoning principle.

The Repeated Reasoning Principle: Students must

practice reasoning in order to internalize desirable

ways of understanding and ways of thinking.

6 Teacher’s knowledge base (TKB)

An educational system can be thought of as a triad of

agents together with an action theory. The agents are stu-

dents, teachers, and institutions, such as school, school

district, home, etc. The action theory consists of these

agents’ shared meanings for ‘‘knowledge,’’ ‘‘learning,’’ and

‘‘teaching’’ and shared perspectives on the social, cultural,

behavioral, and emotional factors involved in the learning

and teaching of particular knowledge. Usually, action
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theories are not explicit to their associated agents, though

they determine the agents’ conceptions and shape and

govern their actions. For example, an action theory dictates

the responsibility and school-related behaviors of students,

teachers, school administrators, and parents. It includes

conventions for how learning occurs and what facilitates or

impedes learning. It also offers tools for measuring what

students know and sets expectations for what they ought to

know. Thus, action theories orient educational systems as

to what, why, and how to carry out school-related actions.

A crucial aspect of any action theory is its assumptions. In

most cases, these assumptions are not explicit, not even to

their agents. It is necessary, however, to understand action

theories, for they can help us explain—perhaps even pre-

dict—educational systems’ behaviors, which, in turn, can

help us improve their efficacy.

In this paper we are particularly concerned with teach-

ers’ action theories, not those belonging to educational

systems in general, though the two are strongly related.

Some crucial components of a teacher’s action theory

comprise her or his knowledge base. Building on Shul-

man’s (1986, 1987) work and consistent with the views of

other scholars (e.g., Brousseau, 1997; Cohen & Ball, 1999,

2000), a teacher’s knowledge base (TKB) was defined in

Harel (1993) in terms of three components: knowledge of

mathematics, knowledge of student learning, and knowl-

edge of pedagogy.

Consistent with the Mathematics Premise, the first

component (knowledge of mathematics) is defined in terms

of both ways of understanding and ways of thinking. In this

respect, teachers’ knowledge of mathematics is not of a

special kind, though it might be different in scope and

depth from that of a professional mathematician. The

mathematics that a teacher ought to know should be

determined largely by the desirable ways of understanding

and ways of thinking targeted by the mathematics curricula

the teacher is expected to teach. This does not mean that a

teacher needs to know just what he or she teaches. For

example, although a second-grade teacher is not expected

to teach geometry and algebra proofs, for her to judge the

quality of the justifications her students provide and be able

to help them gradually refine and advance them, she must

herself be able to reason deductively. In DNR terms, a

second-grade teacher must possess the transformational

proof scheme but not necessarily the axiomatic proof

scheme; the latter is beyond the cognitive reach of most

second-grade students.

The second component of knowledge (knowledge of

student learning) deals with two aspects. The first aspect is

the teacher’s view of the process of mathematics learning.

Based on the DNR definition of learning, the teacher should

understand that the process of learning often involves

confusion and uncertainty (results of disequilibrium), that

the trajectory of learning is impacted by the learner’s

background knowledge, and that both psychological and

intellectual needs instigate the learning process. The sec-

ond aspect deals with cognitive as well as epistemological

issues involved in the learning of a particular piece of

knowledge. Examples of cognitive issues include the tea-

cher’s understanding of the difficulty involved in

conceptualizing a fraction as a number, of differentiating

between a ‘‘variable’’ and a ‘‘parameter,’’ of transitioning

from additive reasoning to multiplicative reasoning and

from empirical reasoning to deductive reasoning, etc.

Epistemological issues refer the teacher’s understanding of

obstacles that are unavoidable—those that have to do with

the meaning of the concept—as opposed to didactical

obstacles, those that are the result of narrow instruction

(see Brousseau, 1997).

Finally, the third component (knowledge of pedagogy)

refers to a teacher’s teaching practices and instructional

principles, terms we will now define. The notion of

teaching practice is based on two concepts: teaching action

and teaching behavior. A teaching action refers to what

teachers in a particular community or culture typically do

in the classroom. For example, in Western cultures,

teachers’ functions include presenting new material, asking

questions, responding to students’ ideas, and evaluating

performance. A teaching action can be thought of as a

teaching function without qualification, without a descrip-

tion of how the function is carried out and without a value

judgment about its quality. A teaching behavior, on the

other hand, is a typical characteristic of a teaching action.

A teaching behavior is always inferred from a multitude of

observations; hence the adjective ‘‘typical.’’ For example,

answering students’ questions is a teaching action, but the

way a teacher typically chooses to answer students’ ques-

tions determines his or her teaching behavior relative to

this teaching action. For example, some teachers typically

respond to students’ questions directly by phrases such as

‘‘right,’’ ‘‘wrong,’’ ‘‘yes,’’ ‘‘no,’’ etc. without attempting to

find a possible conceptual basis for the students’ questions.

Other teachers, in contrast, typically probe students’ cur-

rent understanding while responding to their questions.

These are two different teaching behaviors associated with

the teaching action of answering students’ questions.

Likewise, justifying assertions to the class is a teaching

action, but the typical nature of the justifications presented

is a teaching behavior associated with this teaching action.

Thus, the notion of teaching action is intended to convey a

neutral instructional activity carried out by teachers in a

given community or culture, whereas a teaching behavior is

one of its typical attributes. A teaching action is more

observable than a teaching behavior in that the latter

requires more analysis on the part of an observer. For

example, one can directly observe a teacher responding to
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students’ questions and ideas, but to determine a charac-

teristic of this action—a teaching behavior—many

observations and deeper levels of interpretation are needed.

As to the notion of instructional principle, consider the

common conception ‘‘in sequencing mathematics instruc-

tion, start with what is easy.’’ This conception might be

interpreted as implying a cause-effect link between a

teaching action—that of sequencing mathematics instruc-

tion—and student learning. The teaching action might be

viewed as a likelihood condition: starting with what is easy

for the students may help students learn. It might be viewed

as a necessary condition: for students to learn, teachers

must start with what is easy for them. Or it may be viewed

as a sufficient condition: starting with what is easy for the

students will help students learn. This example can be

abstracted to define the notion of instructional principle:

An instructional principle is a conception about the

effect of a teaching action on student learning. The

teaching action may be conceived as a likelihood condi-

tion, necessary condition, or sufficient condition for the

effect to take place.

In sum, thus, a TKB is defined in DNR as follows:

• Knowledge of mathematics refers to the mathematics a

teacher knows—that is, the desirable ways of under-

standing and ways of thinking possessed by the

teacher.6

• Knowledge of student learning refers to a teacher’s

view of ‘‘mathematics learning’’ and to her or his

understanding of the cognitive and epistemological

issues involved in learning particular mathematical

ways of understanding and ways of thinking.

• Knowledge of pedagogy refers to a teacher’s teaching

practices, which are manifestations of the teacher’s

instructional principles.

Figure 4 depicts the DNR concepts discussed this far.

6.1 Application of DNR-based instruction

to the development of TKB

The goal of this section is to illustrate our approach to

advancing teachers’ knowledge base. DNR-based activities

with teachers aim at providing the teachers with an intense

exposure to DNR-based instruction, involving roles as both

learners of mathematics and as teachers reflecting upon the

mathematics they are learning. Typically, a DNR activity

begins with a problem, in some cases a problem that the

teachers had worked on the previous day or that had been

assigned to them as homework. The teachers are free to

work on each problem individually or in small groups. In

most cases, they spend some time individually establishing

an initial solution approach before they get into their small

working groups. Each classroom activity consists of a

subset of the following teaching segments: teachers work

on the problem individually and in small groups; repre-

sentatives of the small groups present to the class the

groups’ solutions or attempts; teachers reflect on and dis-

cuss the thought processes of solution approaches,

particularly difficulties the teachers encountered as they

attempted to solve the problem; a whole-class discussion to

discern differences and similarities of the different solu-

tions; articulation of ways of understanding and ways of

thinking necessitated by the problem; whole-class discus-

sion of possible difficulties students might have with

different elements in the problem or in its solution,

including the sources of such difficulties; and discussion of

actual work done by students in their class and possible

instructional treatments to deal with students’ difficulties.

In what follows, we will illustrate a few of these

teaching segments specify the instructional objectives they

intend to achieve, and point to their rationale in terms of

DNR. To this end, we will discuss four actual classroom

activities with teachers:

6.1.1 Advancing ways of understanding and ways

of thinking

Problem: Two pipes are connected to a pool. One pipe

can fill the pool in 20 h, and the other in 30 h. How long

will it take the two pipes together to fill the pool?

After solving this problem and discussing their solution

approaches, the teachers were presented with the following

actual four categories of solutions provided by a ninth-

grade class, and were asked to analyze the possible con-

ceptual basis for these solutions.

Solution 1: Divide the pool into five equal parts. The first

pipe would fill one part in 4 h, and the second pipe in

6 h. Hence, in 12 h the first pipe would fill 3/5 of the

pool and the second pipe the remaining 2/5.

Solution 2: It will take the two pipes 50 h to fill the pool.

Solution 3: It will take the two pipes 10 h to fill the pool.

Solution 4: It would take x hours. In 1 h, the first pipe

will fill 1/20 of the pool whereas the second will fill

1/30. In x hours the first pipe would fill x/20, and the

second x/30. Thus, x/20 ? x/30 = 1 (which they then

solved to obtain x = 12.)

The teachers discussed these solutions and concluded

that they represent different ways of understanding the

given problem and that the way of thinking ‘‘Look for a

key word’’ accounts for the way of understanding expres-

sed in Solution 2 due the word ‘‘together’’ in the problem

6 It is important to note again here that the use of the term

‘‘desirable’’ is in the sense described in Harel (2008b).
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text. They also hypothesized that although Solution 3 is

incorrect, it might indicate a realization by the students

who offered it that the time needed to fill the pool by the

two pipes must be less than that the time needed to fill the

pool by one pipe. Of particular interest to the teachers was

Solution 1, which was given by only one student, G. The

discussion among the teachers centered on a possible jux-

taposition of ways of thinking that seemed to have driven

G’s solution, which may include ‘‘draw a diagram,’’ ‘‘guess

and check,’’ and ‘‘look for relevant relationships among the

given quantities.’’

This episode illustrates progress toward the goal of

advancing the teachers’ knowledge of student learning.

Through such activities, teachers realize that the approach

a student chooses to solve a problem depends on how he

or she represents, or interprets, the problem statement. The

ways of thinking, ‘‘a problem can have multiple solutions’’

and ‘‘it can be advantageous to solve a problem in dif-

ferent ways,’’ are extended in our instructional

interventions to concepts; namely, ‘‘a concept can have

multiple interpretations’’ and ‘‘it can be advantageous to

possess multiple interpretations of a concept.’’ These ways

of thinking, although essential in the learning and creation

of mathematics, are often absent from teachers and stu-

dents’ repertoires of reasoning. To advance these ways of

thinking, we engaged the teachers in activities aimed at

promoting multiple ways of understanding concepts. For

example, through their solutions to different problems the

teachers learned that the concept of fraction, say 3/4, can

be understood in different ways and it is advantageous to

understand it in different ways. Such ways of under-

standing include: unit fraction (3/4 is the sum, 1/4 ? 1/

4 ? 1/4), partition (3/4 is the quantity that results from

dividing 3 units into 4 equal parts), measurement (3/4 is

the measure of a 3 cm long segment with a 4-cm unit

ruler), solution to an equation (3/4 is the solution to

4x = 3), and part-whole (3/4 is 3 out of 4 units). Similarly,

the teachers solved problems through which they learned

multiple ways of understanding the string of symbols

y = f(x) and the significance of each interpretation. For

example, they saw how one can understand y = 6x2 - 5 in

terms of a condition on the variables x and y—the set of

all ordered pairs (x, y) for which y is equal to the quantity

6x2 - 5. While here y = 6x2 - 5 is viewed as an equation,

one can understand it as a function: for each input of x

there corresponds the output 6x2 - 5. These newly

acquired ways of understanding by the teachers were in

turn utilized to enhance their knowledge of pedagogy and

student learning. This was done by contrasting these

mature interpretations with the interpretation commonly

possessed by students. For example, through actual work

of students, the teachers saw that for many students,

symbols such as y = 6x2 - 5 represent no quantitative

reality, except possibly that the ‘‘equal’’ sign is understood

as a ‘‘do something signal,’’ where one side of the equa-

tion is reserved for the operation to be carried out and the

other side for its outcome, as was documented by Behr,

Erlwanger, & Nichols (1976).

DNR

Premises Concepts Claims

Instructional Principles

Duality

Necessity

Repeated-reasoning

Mathematics

Learning

Teaching

Ontology

Epistemophilia

Knowing

Knowing-Knowledge Linkage

Subjectivity

Interdependency

LearningMental Act 

Way of Understanding

Way of Thinking

Proof scheme ProofProving

Teacher’s Knowledge Base 

Mathematics Student learning Pedagogy

Teaching practice 

Teaching actionTeaching behavior 

Context Dependency

Fig. 4 DNR structure:

elaboration 4
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6.1.2 Necessitating ways of understanding and ways

of thinking

Problem: Take a fraction whose numerator and denom-

inator are integers. Add a number different from zero to

the numerator and divide the denominator by that

number. When would the new fraction be greater than

the original fraction?

In accordance with the necessity principle, the different

interpretations of concepts were necessitated for the

teachers by problems they solved, as the following dis-

cussion illustrates: The teachers discussed in small groups

the approaches they took, their partial solutions, and their

full solutions. After 35 min, one of the teachers presented

her group’s solution. Her solution process involved many

quadratic inequalities. During her presentation, there were

numerous questions and suggestions from the class

regarding the solution process. Following this presentation,

one of the teachers, K, suggested checking a few cases to

see if they agree with the final answer. After about 5 min of

group work, K indicated that he noticed a strange pheno-

menon: when different forms of the same fraction are used

different results are obtained. He demonstrated his obser-

vation with the equivalent fractions -2/5 and -6/15.

Indeed, for -2/5 any value of x works but for -6/15 only

x\3�
ffiffiffi

3
p

or x [ 3þ
ffiffiffi

3
p

work. This provided a great

opportunity—intended and anticipated—for the instructor

to point to the necessity to differentiate between ‘‘fraction’’

and ‘‘rational number.’’ Although the ratio is the same, the

fraction is not, and the solution with a different fraction,

even if the ratio is the same, is also different. The solution

for the fraction -2/5 is different than the solution for the

fraction -6/15. This result was particularly amazing for the

teachers.

6.1.3 Internalizing ways of understanding and ways

of thinking

Problem: Prove the quadratic formula.

Prior to this problem, the teachers had repeatedly worked

with many quadratic functions, finding their roots by

completing the square. They abstracted this process to

develop the quadratic formula. In doing so, they repeatedly

transformed a given equation ax2 ? bx ? c=0 into an

equivalent equation of the form (x ? T)2 = L for some

terms T and L, in order to solve for x (as �T þ
ffiffiffi

L
p

and

�T �
ffiffiffi

L
p

). To get to the desired equivalent form, they

understood the reason and need for dividing through by a,

bringing c/a to the other side of the equation, and com-

pleting the square. For these teachers, the symbolic

manipulation process was goal oriented and conditioned by

quantitative considerations; namely, transformations are

applied with the intention to achieve a predetermined

intrinsic goal. In this case, the teachers practiced the way of

thinking of transforming an algebraic equation into a

desired form without altering its solution set. This way of

thinking—which is one characteristic of algebraic reason-

ing—was known among the teachers as the changing-the-

form-without-changing-the-value habit of mind. We see

here the simultaneous implementation of the duality prin-

ciple, the necessity principle, and the repeated reasoning

principle. In particular, the repeated application of this

habit of mind helped the teachers internalize it, whereby

they become autonomous and spontaneous in applying it.

6.1.4 Institutionalizing ways of thinking

Problem: Is it true that if a positive integer is divisible by

9 then the sum of its digits is divisible by 9?

Two of the solutions offered by the teachers were:

Justification 1: Yes, it is true, because I took many cases,

and in each case when the number is divisible by 9, the

sum of its digits is divisible by 9.

Justification 2: For 867, 867 = 8 9 100 ? 6 9 10 ?

7 9 1, which is (8 9 99) ? (6 9 9) ? (8 ? 6 ? 7).

Each of the first two addends, 8 9 99 and 6 9 9, is

divisible by 9, so the third addend, 8 ? 6 ? 7, which is

the sum of number’s digits, must be divisible by 9. The

same can be done for any number, so it is true that if the

number is divisible by 9, the sum of its digits is divisible

by 9.

In our earlier research (Harel & Sowder, 1998; Martin &

Harel, 1989), Justification 1 was found to be the most

common among college students. A probe into the rea-

soning in Justification 1 has revealed that those subjects’

conviction stems from the fact that the proposition is

shown to be true in a few instances, each with numbers that

are supposedly randomly chosen—a manifestation of the

empirical proof scheme.

In discussing these answers with the teachers, the goal

was to help them internalize a critical distinction between

the two: In Justification 2, learners generalize from a pat-

tern in the process, in contrast to the pattern in the result

observed in Justification 1. In process pattern generaliza-

tion, learners focus on regularity in the process; whereas in

result pattern generalization, they focus on regularity in

the result. Process pattern generalization is a way of

thinking in which one’s conviction is based on regularity in

the process, though noticing regularity in the result might

stimulate it. This behavior is in contrast to result pattern

generalization, where proving is based solely on regularity

in the result—obtained by substitution of numbers, for

instance (see Harel, 2001). Through repeated discussion of
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this fundamental difference in the context of mathematical

problems, we aimed at helping the teachers refine their

ways of thinking about what constitutes justification in

mathematics—their proof schemes: from proof schemes

largely dominated by surface perceptions, non-referential

symbol manipulation, and proof rituals, to a proof scheme

that is based on intuition, internal conviction, and ulti-

mately logical necessity.

7 Conclusions

DNR’s answer to the first of the two fundamental questions

presented in the opening of this paper, ‘‘What is the

mathematics that we should teach in school?’’, is that the

focus of curriculum and instruction in mathematics should

be on desirable ways of understanding and ways of

thinking, not only by the former, as is commonly the case

(see Paper I). An important goal of research in mathematics

education is, therefore, to identify these ways of under-

standing and ways of thinking; recognize, when possible,

their development in the history of mathematics; and,

accordingly, develop mathematics curricula and teacher

education programs that aim at helping students construct

them. This should not be taken to imply that mathematics

curricula should mirror historical developments of mathe-

matics. Rather, the assumption here is that historical

developments can shed light on cognitive processes of

learning and, in turn, help provide a perspective on

teaching.

To address the second fundamental question, ‘‘How

should mathematics be taught?’’, DNR offers a definition of

learning in terms of change in knowledge and the stimuli

that result from and instigate the change. These stimuli, in

turn, are defined in terms of two types of human needs—

intellectual need and psychological need—and the knowl-

edge currently held and newly produced by the students. Of

particular importance is that this knowledge must always

be judged with respect to desirable mathematical knowl-

edge (that is, with respect to desirable ways of

understanding and ways of thinking). The question of

paramount importance—yet to be answered—is whether

this definition is operational. That is, whether it is possible

to specify the nature of change in knowledge and the

stimuli that result from and instigate the change. Attempts

to address this question are underway.

In addition, DNR offers three foundational instructional

principles, duality, necessity, and repeated reasoning. Each

of these principles poses both methodological and peda-

gogical challenges:

The duality principle, which deals with the develop-

mental interdependency between ways of understanding

and ways of thinking, raises the question: How,

methodologically, does one determine a way of thinking

from a collection of ways of understanding? For example,

what is the range and contextual variation of observed

ways of understanding that is necessary to determine a way

of thinking? Also, how do answers to these questions

translate into practical teaching methods?

The necessity principle is linked to the duality principle

in that the TU Part—students develop ways of thinking

through the production of ways of understanding—can

only be implemented by devising problematic situations

that intellectually necessitate particular ways of under-

standing from which targeted way of thinking may be

elicited. This raises the question: How does one determine

students’ intellectual need? DNR provides a framework for

addressing this question, but detailed methodologies,

together with suitable pedagogical strategies, for dealing

with this question are yet to be devised. The framework

consists of a classification of intellectual needs into five

interrelated categories:

• The need for certainty is the need to prove, to remove

doubts. One’s certainty is achieved when one deter-

mines—by whatever means he or she deems

appropriate—that an assertion is true. Truth alone,

however, may not be the only need of an individual,

and he or she may also strive to explain why the

assertion is true.

• The need for causality is the need to explain—to

determine a cause of a phenomenon, to understand what

makes a phenomenon the way it is.

• The need for computation includes the need to quantify

and to calculate values of quantities and relations

among them. It also includes the need to optimize

calculations.

• The need for communication includes the need to

persuade others than an assertion is true.

• The need for connection and structure includes the

need to organize knowledge learned into a structure, to

identify similarities and analogies, and to determine

unifying principles.

Back to the notion of ‘‘instructional principle,’’ the use

of the term ‘‘principle’’ here is not without difficulty. The

difficulty is twofold. First, the DNR instructional principles

might be viewed as crude generalizations: that certain

relations between teaching actions and student learning

observed in a limited number of teaching experiments are

not just local observations but principles, relations that are

valid for all mathematics instruction. Second, and coupled

with the first, is the question: are these principles merely

empirical inferences from local observations or do they

account for them? It is important to highlight these diffi-

culties because it is with these difficulties in mind that the

DNR instructional principles must be understood. One must
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reserve a distance between the notion of ‘‘instructional

principle’’ in education and that of ‘‘physical principle’’ in

science. The latter clearly means that a physical principle,

more than being consistent with empirical observations,

actually accounts for them. The choice of the term ‘‘con-

ception’’—rather than ‘‘law,’’ for example—in the

definition of ‘‘instructional principle’’ (in Sect. 5) is

intended to reserve this distance. The hope, of course, is

that the validity of the DNR instructional principles will be

confirmed with additional and more systematic investiga-

tions, both empirical and theoretical, whereby their status

would change from mere empirical inferences to state-

ments with an explanatory power.

The repeated reasoning principle aims at helping stu-

dents internalize and organize the knowledge they learn. It,

too, raises methodological and pedagogical challenges. For

example: How should mathematical activities be

sequenced so that they repeatedly call for thinking through

problematic situations, on the one hand, and respond to

students’ changing intellectual needs, on the other?

DNR defines TKB in terms of three components of

knowledge: knowledge of mathematics (the desirable ways

of understanding and ways of thinking possessed by the

teacher), knowledge of student learning (a teacher’s view of

‘‘mathematics learning’’ and her or his understanding of the

cognitive and epistemological issues involved in learning

particular mathematical ways of understanding and ways of

thinking), and knowledge of pedagogy (a teacher’s teaching

practices and instructional principles). What is crucial here

is the content of the three components comprising the TKB,

not their label, which may resemble those offered by others

(e.g. Ball & Bass, 2000). In Harel (1993), the content of

these components was described in general, less precise

terms, though undoubtedly was influenced by the DNR

ideas, which at the time were neither explicit nor well-

formed. Here, in contrast, the content of TKB is explicitly

implied from the DNR framework. Of particular importance

is that according to DNR, a teacher’s knowledge of peda-

gogy and student learning rests on that teacher’s knowledge

of mathematics. That is to say, although each of the three

components of knowledge is indispensable for quality

teaching, they are not symmetric: the development of a

teachers’ knowledge of student learning and of pedagogy

depends on and is conditioned by their knowledge of

mathematics. This position is implied from the definition of

the TKB and DNR premises: on the one hand, instructional

objectives, by the Mathematics Premise, must be formu-

lated in terms of mathematical knowledge, i.e., desirable

ways of understanding and ways of thinking. On the other

hand, ‘‘student learning’’ in the definition of the TKB is the

sense of DNR’s definition of ‘‘learning,’’ which, as we have

discussed earlier, involves the knowledge utilized and

newly constructed by the student during the learning phases.

Hence, as a teacher attends to the learning process of her or

his students, he or she must judge their current knowledge

and the knowledge they produce relative to the targeted

mathematical knowledge. Clearly, a teacher with insuffi-

cient mathematical knowledge will not be able or develop

the necessary understanding to make such judgments. This

raises a critical question: What mathematics should a tea-

cher know? As we have argued in Paper I, thinking of

teachers’ mathematical knowledge in terms of ways of

thinking (not only in terms of ways of understanding) helps

address this question more decisively.
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