CHAPTER 6

THE ROLE OF CONCEPTUAL ENTITIES
AND THEIR SYMBOLS
IN BUILDING ADVANCED MATHEMATICAL CONCEPTS

GUERSHON HAREL & JAMES KAPUT

Mathematical thinking is carried out using mental objects. For example, suppose one asks
if a vector space V and its double dual V** are isomorphic. At one level, one is asking about
the “objects” Vand V** and, to begin describing an isomorphism, one may go on to describe
a correspondence between respective vectors in the two spaces, which again, are treated
mentally as objects, although they might be n-tuples or matrices, for example. Similarly,
one may need to define a mapping between two function spaces, where the elements of the
domain and range of the mapping must be treated cognitively as objects, as opposed to the
mapping itself, which may be treated as a process, with inputs and outputs. In yet another
instance, one may need to reinterpret a universal construction in the sense of MacLane
(1971) as an adjoint functor pair, where the existence of a unique mapping with a certain
property in fact defines a natural transformation between functors — so the mapping must
play the role of an object on which the natural transformation acts. Such experiences are
quite common in mathematics at all levels, but they feature widely throughout advanced
mathematical thinking. The aim of this chapter is to begin to discuss them and their roles
in helping us to build ever more complex mathematical concepts.

The idea of conceptual entities formation was suggested by Piaget (1977) in his
distinction between form and content. Recently, several researchers have recognized its
value in the learning of mathematics. It has been called encapsulation (Ayers, Davis,
Dubinsky & Lewin, 1988), reification (Sfard, 1989), integration operation (Steffe &
Cobb, 1988), for example, this process is an instance of reflective abstraction (Beth &
Piaget, 1966), in which “a physical or mental action is reconstructed and reorganized on a
higher plane of thought and so0 comes to be understood be the knower” (p. 247). Greeno
(1983) defines a conceptual entity as a cognitive object for which the mental system has
procedures that can take that object as an argument, asan input. He distinguishes cognitive
objects from attributes, operations and relations, which attach to or act on objects. Further,
he suggests that toqualify as objects, they must be permanently available in the individual s
mental representation (p. 277).

The construction of function as a conceptual entity is an example of the entification
process (Thompson, 1985a; Harel, 1985; Ayers et al, 1988). One level of understanding
the conceptof functionis to think of a functionas aprocess associatingelements inadomain
with elements in a range. This level of understanding may be sufficient to deal with certain
situations, such as interpreting graphs of functions point-wise or solving for xin an equation
of the form f(x)=b, but it would not be sufficient to deal meaningfully with situations which
involve certain operators on functions, such as the integral and differential operators, as we
will see later in this chapter. For the latter situations, the three components of function —the
rule, the domain, and the range — must be encapsulated into a single conceptual entity so
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“hat these operators can be considered as procedures that take functions as arguments.
‘ncidentally, aformal definition of a function asa single set of ordered pairs, amathematical
2ntity, does not appear 10 play a role in these situations — when would one conceive of a
function as a set of ordered pairs in the context of applying a differential operator to that
function? In this way the concept image evoked in a given context may be different from
the formal definition, and may even at times be in conflict with that definition, as discussed
in the previous chapter.

The construction of conceptual entitics embodies the “vertical” growth of mathematical
knowledge (in the sense of Kaput, 1987). For example, at lower levels, the act of counting
leads to (whole) numbers as objects, taking part-of leads to fraction numbers, functions as
rules for transforming objects become themselves objects that can then be further operated
upon, for instance they may be differentiated or integrated. This complements the kind of
“horizontal” growth associated with the translation of mathematical ideas across represen-
tation systems and between non-mathematical situations and their mathematical models.

In the next section of this chapter we lay out some of the circumstances under which
conceptual entities are created and used and what their cognitive function might be, often
by pointing to consequences in students’ reasoning processes where they have not yet been
mentally constructed. In the following part we will shift attention to the complex roles of
notation systems in building and using conceptual entities. We regard thischapteras aforay
intorelatively unexplored territory, and do not make claims of completeness or of empirical
substantiation for the framework being suggested.

1. THREE ROLES OF CONCEPTUAL ENTITIES

We will discuss the concepts of function, operator, vector space, and limit in terms of the
role that conceptual entities have for:

1. Alleviating working memory or processing load when concepts involve mul-
tiple constituent elements.

2. Facilitating comprehension of complex concepts: the cases of “uniform”
operators, “point-wise” operators, and “object-valued” operators.

3. Assisting with thefocus of attention on appropriate structure in problem solving.

Greeno (1983) suggested a number of functions of representational knowledge involving
conceptual entities: forming analogies between domains, reasoning with general methods,
providing computational efficiency, and facilitating planning. He offered empirical
findings that are consistent with his suggestions; these findings deal with elementary
mathematics — geometry proofs and multi-digit subtraction — as well as physics, puzzle
problems, and binomial probability. He also suggests that instructional activities with
concrete manipulatives can lead to an acquisition of representational knowledge that
includes conceptual entities. Other researchers suggest different types of instructionai
activities for the construction of conceptual entities. For example, Ayers et al, (1988)
demonstrate how computer activities in learning mathematical induction and composition
of functions can facilitate the construction of these concepts as entities (see the next chapier).
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1.1 WORKING-MEMORY LOAD

One psychological justification for forming conceptual entities lies in their role in
consolidating or chunking knowledge to compensate for the mind’s limited processing
capacity, especially with respect to working memory. To avoid loss of information during
working memory processes, large units of information must be chunked into single units.
or conceptual entities. Thus, thinking of a function as a process would require more
working-memory space than if it is encoded as a single object. As a result, complex
concepts that involve two or more functions would be more difficult to retrieve, process,
or store if the concept of function is viewed as a process. This is true for many concepts in
advanced mathematics. Imagine, for example, the working-memory strain in dealing with
the concept of the double dual space of a space of nxn matrices if none or only a few of the
concepts, matrix, vector space, functional, and field are conceived as consolidated entities.

1.2a COMPREHENSION: THE CASE OF “UNIFORM”
AND “POINT-WISE” OPERATORS

Despite the heavy working-memory load involved in understanding the dual space of an
nxn matrix space without most of its subconcepts being entities, it is still possible to make
sense out of it, at least momentarily. In some situations, however, the justification for the
formation of conceptual entities is more than just a matter of cognitive strain that results
from a memory load. In such situations comprehension requires that certain concepts act
mentally as objects due to an intrinsic characteristic of the construct involved. Examples
of such situations include those which involve the integral or differential operators. These
types of “uniform™ operators cannot be understood unless the concept of function is
conceived as a total entity. We distinguish these from other types of operators on functions
which could be termed “point-wise” operators, and for which there is no need to conceive
functions as objects, but only as processes acting on individual elements of their domains.
For example, sum and composition can be treated as point-wise operators; this position is
different from Ayers et al’s (1988) position who argue that composition of functions
requires the encapsulation of function as an entity. Further research is needed to examine
the two arguments. The cognitive process of understanding these operators involves the
conception of a function as a process acting on individual elements of the domain. In
constructing the composition of two functions f and g, say fog, one must first perform the
process g on an arbitrary element x of the domain, generating aresult g(x), and then perform
the process of f on that result to obtain f(g(x)), all conceivable as acting on individual
elements of the domain. These two separate operations are coordinated to produced a new
process. Similarly, in constructing f+g, for every input x, the outputs, f(x) and g(x), are
produced to construct the sum, f(x+g(x). This sum can even be illustrated graphically by
using a sample set of directed line segments for the distances between the horizontal axis
and the graphs of f and g, respectively. Then the graph of f+g is the graph whose distance
from the horizontal axis is given by the vector sum of the directed line segments. Clearly,
the sum f+g can be illustrated point-wise.

The limit of a one variable function is another case which may be regarded as a point-
wise operator. To understand this complex concept, many clusters of knowledge about
different concepts in mathematics are required whose rich conceptual content is reflected
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in the complexity of its historical development. We will not attempt to analyze this
knowledge here; however, the process-conception of function is sufficient (and necessary)
to understand the limit concept. This is so because xli-'—?a f(x) = L may be viewed in terms

of the point-wise dependency between the behavior of the numbers “near” a, x’s, or inputs
of f, and the behavior of their outputs, f(x)’s, “near” L.

By contrast, “uniform” operators arise when the point-by-point process is inapplicable.
For example, to understand the meaning of:

(0= j P icx) dx

as a function of ¢, it is necessary to think of I(f) as an operator that acts on the process x —
f(x) as a whole to produce a new process:

t— JI f(x)dx

Itis the awareness of acting on a process as a whole, asa totality — not point-by-point — that
constitutes the conception of that process as an object.

Mathematically unsophisticated students attempt to interpret “uniform” operators as
“point-wise” operators apparently because they cannot conceive of a function as an object.
Consider the derivative operator. Our experience in the classroom suggests that many
students understand that f{(x) means: for the input x there is the output f(x), and for that
output we get the derivative f'(x). Faced with the question,

find the derivative of the function f(x) = {S";x ‘é i fg’

a common response is:

won_ jcosx if x#0,
f(")‘{ 0 if x=0.

The student is no longer treating differentiation as a limit process, but as an algorithm to
be applied to the formula at each point (or to the two separate formulas in the expression).
To be able to handle this problem, the student needs to be able to consider the values of the
function near x and renegotiate the limit process. In Greeno’s terms, the function f must act
as an argument for the (cognitive) differentiation operator, which it cannot do unless the
function is conceived as a conceptual entity.
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1.2b COMPREHENSION: THE CASE OF OBJECT-VALUED OPERATORS

As the notion of function develops, it can have different objects as inputs and outputs, in
particular, it can output another function. For instance, the real-valued function f(x,y) is
usually thought of as a process mapping points on the plane, (x, ), into points on the real
line, f(x,y); thus, students who possess the process-conception of function would likely
have no difficulty dealing with this interpretation. A more subtle interpretation can view
f(x,y) as a process which associates points on the real line, x, with functions, f;(y) where the
latter assigns the value £(x,y) toy. In this interpretation f is regarded as a function with input
xand output the function fy. We believe that, cognitively, thinking of a function as an output
is notdifferent from thinking of it as an input, in the sense that in both cases a function must
be treated as a variable, as a conceptual entity. In this respect, this interpretation of f(x,y),
like the “‘uniform” operator, demands that the concept of function will be treated as an
object. However, the cognitive demands of such a viewpoint are often great.
Thisanalysis, which hasyet tobe empirically substantiated, is supported by our informal
observations while teaching undergraduate mathematics classes the concepts of double
limit, lim y)-(a,b) f(x,y), and the iterated limit, xlill)la yllll;lb f(x,y). As some textbook
authorshave indicated (¢.g., Munroe, 1965, p. 108), we observed that while computationally
the iterated limit is easier than the double limit, conceptually the iterated limit involves a
more sophisticated idea, which causes difficulty for students in particular circumstances.
In stating and proving certain theorems on iterated limits (e.g., theorems concemning
conditions on equality between this limit and the double limit), one needs to regard

lim hmb f(x,y) as a composition of the following three mappings (see figure 12):

xsay—
lim 11m
y —b
-

Figure 12 : lim lim f(x,y) as a composition of three mappings
x—ay—b

1. M: x—f,(y), whose domain is a set of real numbers and whose range is a set

of functions;
2. Jlim:f, (y) - fx), whose domain and range are sets of functions;

3. xligla: f(x)>c, whose domain is a space of functions and range is a set of

numbers.
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Students responses and questions indicate difficulty in dealing with aspects concerning the
operator M, which, as indicated earlier, requires the object-conception of function. While
the operator M must be understood as an object-valued operator, the other two operators,
hmb and th can be viewed in two ways, which determine different levels of
understandmg the concept of iterated limit. In one way hmb and hm are uniform
operators acting on objects which happen to be functions. ThlS level of understandlng,
although desirable, is not achieved by the average student, who usually views these limits,
and the concept of limit in general, in a less sophisticated way as point-wise operators.

Besides the iterated limit, the undergraduate mathematics curriculum is replete with
situations involving object-valued operators, for example those which concern parametric
functions, such as f(x)=ax+b, f(x)=sin(ax), f(x)=log,x, eic., or parametric equations
involving such functions. In these situations the correspondence between the parameters
and the function, or the equation, constitutes an object-valued operator. The difficulties
involved in understanding object-valued operators was investigated by Harel (1985) in the
context of linear algebra (taught to advanced high-school students in Israel). It was found
that students usually had difficulty dealing with such a correspondence, unless they were
able 10 tag the outputs of the correspondence with familiar geometric figures, such aslines
or planes (e.g., t — (a, by+i(c, d) or (t;, 1) > (a.b) + t;(c, d) + to(e, f ). These geometric
figures, which were manipulable objects for the students, apparently helped the students
to construct such a correspondence as an object-valued operator.

Another common example involves the construction in abstract algebra of the quotient
object associated with a “normal” sub-object, €.g., in the case of groups. The cosets must
be conceived as objects if they are to participate as elements of a group. However, the
existence of a “representative element” for a coset, where the operation defined on cosets
can be given in terms of an operation on their representatives, makes it possible to deal
successfully with many aspects of the quotient group on a symbol manipulation level
without treating the subsets of the group as objects, or even as subsets., Students’ inadequate
conceptions are revealed when one asks them to attempt to create a group using a non-
normal subgroup’s cosets — they often cannot understand why the subsets *“fall apart” when
they attempt to multiply them together as sets, or by using representatives.

Finally, data reported by Kaput (in press) can further support the cognitive distinctions
among the different types of operators made above. Secondary level students were asked
to determine an algebraic rule that fits a student-controllable set of numerical domain-data
(they pick the x’s and the computer provides the f(x)’s). Examination of their behavior
revealed a clear and stable decomposition of the group of students (in a sample of over 40
high school students) into two sets, one of whom consistently used a point-by-point pattern-
matching process, mediated by natural language formulations of their proposed “rules,”
while the other searched for and applied a parametrically mediated formulation of their
proposed rules. The latter, for example, would look for constant change in the dependent
variable, identify this as the *m” in y=mx+b, and proceed from there. For them the process
was a search for parameters that indexed functions as objects. In effect, they were dealing
with a space of functions (albeit a limited one), whereas the other group of students
conceptualized the task as a point-wise attempt to build a function whose point-wise
behavior matched the rule that they had formulated using natural language.
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1.3 CONCEPTUAL ENTITIES AS AIDS TO FOCUS

The third role of conceptual entities we have identified involves facilitating focus on those
aspects of a problem representation that are most relevant to the solution of a problem. In
a one-on-one interview with an experimental group of Israeli high-school students
regarding the concept of vector space (after several instructional sessions in which this
concept was gradually abstracted from two and three dimensional representations; see
Harel, 1989a, 1989b), the first author asked the following question:

Let V be a subspace of a vector space U, and let B be a vectorin U butnotin V.
Is the set V+B={v+B | vis a vector in V} a vector space?

There were clearly two groups of students: those who answered this question by checking
the whole list of the vector-space axioms, and those whose answer was something like, “you
moved the whole thing, it doesn’t have the zero vector any more”, or “the new thing, V+f3,
isnot closed under addition”. Clearly, the latter group of students viewed V as a total entity,
a “thing,” and thus they were able to view +f as a shift operator which takes V as an
argument, an input. This enabled them to focus on those vector space properties that are
most relevant to the solution of the given problem, namely, the zero property or one of the
closure properties. The other group of students, on the other hand, relied on the formal
definition of vector space by checking whether the individual axioms apply. That V+8 is
a subset of the vector space U, which guarantees the existence of most of the axioms, was
not visible to these students. Moreover, many of these students failed to check some of the
axioms, including those essential to the solution of the problem (e.g., the existence of zero).

2. ROLES OF MATHEMATICAL NOTATIONS

The power of mathematics associated with the roles of conceptual entities is closely related
to the roles of mathematical symbolism. Using mathematical notations, complex ideas or
mental processes can be chunked and thus represented by physical notations which, in tum,
can be reflected on or manipulated to generate new ideas. In this section we will discuss
three aspects of the interaction between formation of conceptual entities and mathematical
notation:

1. The role of mathematical notation in forming conceptual entities.

2. Different types of mathematical notations, elaborated and tacit notations, and
the manner in which they represent conceptual structure.

3. Notations as substitutes for concepts.
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2.1 NOTATION AND FORMATION OF COGNITIVE ENTITIES

Greeno (1983) stated two conditions that help distinguish entities from other mental events.
One is its continual presence in a mental representation; the other (mentioned earlier) is its
ability to act as an argument in another mental procedure or argument. By providing
continual perceptual experience, material notations help provide the basis for continuing
conceptual presence, This role is based simply on notations as names — the notation serves
to name an item in our conceptual world. We might term this the “nominal” role. Note that
the partsof the syntax of a notation systemn associated with identification and discrimination
of notational objects plays an important role here. Having an explicit name for a mental
event helps objectify it through a kind of transference of object permanence — from the
permanence of the physical notational name (which produces perceptual experience on a
more or less continuous basis) to a cognitive permanence. Of course, the perceptual item
mustsomehow come to be integrated with the conceptual one. Otherwise, all one mightend
up with is, say, an easily reproducible mental experience of a mark or character string, with
no other mental activity or structure beyond that primitive experience — which is the
experience of altogether too many students.

The nominal role of symbols is frequently played out using conventions that help
distinguish the status or differing roles of objects in complex situations - convention-based
variations in the names of objects help distinguish the classes to which they belong.
Suppose a concept involves a process which takes entities of a different order as inputs and
outputs, e.g. differentiation operating on functions. Then there is a need to distinguish
between the higher level process and its lower level inputs and outputs, a need which is
typically satisfied by using systematically different symbols for the items at each level.
Then the conceptual activity of keeping the things distinguished is off-loaded onto the
notation system. For example, many higher level mathematical activities involve defining
functions between sets of functions —as between a vector space and its double dual. Another
typical example occurs in topology, when one defines various compactifications, e.g., the
Stone-Czech compactification of a regular Hausdorff space based on sets of continuous
functions on the unit interval. In all such cases, one finds that, typically, different classes
of characters are used to distinguish the different levels of functions - say, one Greek and
the other contemporary English-based.

Systematic variation in names also is employed through the use of different classes of
symbols to distinguish when an object is being treated in two different ways, where it has
essentially two different identities. Consider the conventions used to distinguish the
identity of a real number x from its identity as a member of the field of complex numbers,
where it may be denoted by x+0i. Similar distinctions are made whenever a canonical
embedding is being employed, not merely in the case of algebraic closures, because it is a
characteristic of “canonicalness” that the substructure is maintained within the larger
structure. A related case involves the distinction between a constant function and its value.
In all these cases, object identity is identified and maintained notationally.

Relative to Greeno’s second condition for cognitive entities acting asarguments in other
procedures, the syntax of a notation system specifically structures the place of the material
notational objects in a coherently organized physical system. Sucha system is designed to
support a given type of thinking. For example, the character string notation for functions
supports highly sophisticated manipulations, which in turn, are used to facilitate a wide
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variety of mental operations on the conceptual objects that those character strings denote.
Thus, the act of factoring the character-string representation of a polynomial function to
help identify its roots may be based on some syntactic rule (e.g., applied to the difference
of cubics), which obviates the need to justify all the steps of the process. The strength of
anotation system may be measured by whether, and to what degree of fidelity, syntactically
guided actions on its objects reflect and/or subsume important mental operations.

We conclude this section with two specific examples to illustrate the variety of ways
notations either help encapsulate mathematical concepts as entities or supplant conceptual
entities in reasoning processes. Goldin (1982) discusses the impacts of languages or
notations on the different stages of the problem solving process, citing his own data as well
as the well-known problem-isomorph work by Simon and colleagues. The following
discussion can be thought of as somewhat preliminary to the issues discussed by these
researchers in the sense that we are dealing with the concept-notation relationship ata more
primitive level.

Example 1. Consider the use of graphical notation, the slope of straight lines, to
facilitate the order comparison between ratios described as linear functions
between sets of objects, measures, or even numbers. To compare two such on
the basis of a table of data (a sequence of ordered pairs) or even on the basis of
a pair of fractions is not as easy as comparing the slopes of their associated
straight lines ina coordinate plane. In thiscase one need only attend to two things
(2 lines) as distinguished by their most salient attribute, their slope. Each single
line embodies an infinite set of equivalent pairs of ratio values. This secems to
be an instance of a one-for-many substitution of a single notational object for a
set of mental objects, although from another perspective it amounts to an
integration of detailed features into a single object.

Example 2: Recall the study mentioned in §1.2 where students were determining
functions from numerical data. There were two types of students: One type of
students were essentially “pre-algebraic” in their thinking, and treated every
potential rule that they inferred from the numerical data in a table (which they
generated) as a natural language-based rule. That is, they thought of 2x+1 as
doubling and adding one, in terms of a natural language interpretation, rather
than in terms of parameters m and b in mx+b. Thus they did not see growth in
the numerical data in the same way as those who were looking for values of these
parameters. Basically, the latter were looking for growth rates, which they
interpreted as the first parameter’s value, etc. For them, a linear function was
experienced as a “thing”, a conceptual entity, whose identity is determined by
the two parameters. The other students were looking for a way to translate from
their natural language-based encoding of an unencapsulated processto algebra.
They quite often succeeded - as long as the parameters involved were positive
whole numbers. For negatives, they fell apart, because they were not able to get
easy natural language encodings of what for them was a process rather than a
thing (Kaput, in press). An open question is what is the relation between the
conceptual entity and the parameter notation? Which came first? Or did they co-
evolve? In any case, this example scems to offer an instance of the functional
powerof the nominal use of symbols —as do most systematic uses of parameters.
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2.2 REFLECTING STRUCTURE IN ELABORATED NOTATIONS

The inventors of mathematical notations created them to express the contents of their own
minds, both to themselves, to aid their own thinking, and to others, to aid in the
communication of their conceptions. As Leibniz, that great master of notation-invention
putit,

In signs one observes an advantage in discovery which s greatest when they express the exact nature
of a thing briefly, and, as it were, picture it; then indeed the labor of thought is wonderfully
diminished. (Quoted in Cajori, 1929, p.184)

Extending his remark, we might add that the structure of the conceptions is, in some way,
being reflected in the structure of the notations, especially in their syntax. Or, put more
constructively, the experience of perceiving the notations shares important features with
the experience of the conception apart from any perceptual act. Extending this observation
further, we suggest that it is even more important that actions on notational objects in some
regular way reflect mental actions on the conceptions. (We again hasten to add, however,
that we are not suggesting any kind of simple relationship between notation and concep-
tion!)

But mathematical symbols differ in the extent to which they include features that reflect
the structure of the mathematical objects, relations or operations that they stand for. Some
arc more elaborated than others (Harel, 1987). For example, the place-valued symbol 324
expresses aspecific structure of the quantity itrepresents: three hundreds, two tens, and four
ones. Of course, this number written in expanded notation is even more claborated.
Similarly, the more abstract symbols, (x, y) for an ordered pair of numbers, f(x) = 3x2 for
a specific real-valued function, AB for a line segment whose endpoints are A and B, and

a,, a;, .. ap
ay Gy . Gyp
Ami Gy - Gmn

for an mxn matrix, are all relatively elaborated symbols, because they encode the structures
or relationships among components of their referents.

On the other hand, for example, the concept “matrix of the linear transformation T
relative to the pair of ordered bases L and v” can be symbolized by the significantly less
elaborated symbol [T],, .. A more elaborated symbol for this concept could be [T],,_,y,
which indicates that the matrix representation of a transformation T depends on the
relationship between the bases in its range and in its domain. An even further elaborated
symbol for this concept is:
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which encodes many of the variables included and its referent. In contrast, the symbol [‘iﬂ
(used by Nering, 1970, to represent the same concept) is far less elaborated, whilst the bare
symbol T is a non-elaborated, or tacit, symbol. Tacit symbols provide essentially an
indexical function — they name things, without denoting aspects of the structure of what is
named.

One category of tacit symbols consists of those which, during a discussion or proof, are
used to represent variables. Forexample, the statement, “let  be an ordered pair ...”, typifies
a context in which such a tacit symbol is used; here, the symbol § does not encode the
structure of its referent — an ordered sequence of two objects — but it, together with the
surrounding phrases, does name the set over which the variable varies.

The extent to which a notation is elaborated is determined by the extent to which it ties
to prior mathematical knowledge, which is very much a cognitive matter. Indeed, what is
elaborated for one person may appear very bare and tacit for another. Nonetheless, the act
of connecting a bare notation to an elaborated one is a translation act, which, depending on
circumstances, may operate in either direction. The notation’s perceived connection with
prior knowledge takes the form of perceived features that reflect features of the prior
knowledge. For example, two different symbols are usually used to represent the compo-
sition of two functions fand g: f(g(x)) and (f-g)(x). The symbol f(g(x)) expresses the process
in which the two functions are composed: the input x in the function-machine g produces
the output g(x), where g(x) now acts as an input in the function-machine f to produce the
output f(g(x)). (Note the strong use of temporality here.) Thus the symbol f(g(x)) is
amenable to the thinking of a function as a process, but depends on the prior knowledge of
input-output relations expressed using the standard f(x) notation. The symbol (f-g)(x), on
the other hand, describes an operation between two functions — f and g — which produces
athird one - (f-g)(x). This symbol describes f and g as inputs in the [meta] function-machine
», and thus to understand its meaning functions must be viewed as conceptual entities. In
this example, the prior knowledge is that of operating on inputs to functions, and the
notation feature is reflected in a parallelism of structure, except that the first function in the
composition acts as the input.

The pedagogical importance of this example is that some mathematical symbols cannot
be understood via the symbol f(g(x)); for example, the “uniform” operator:

() = _[x f(1) dt.

Students have trouble thinking of the integral as a function of x — which is revealed when
they arc asked to treat it like a function. Our notation I{x) for itis itself intended to help with
this — it assists entification by treating it notationally as a function, elaborating it in such a
way that the functional dependence on the variable x is highlighted.

The distinction between elaborated symbols and tacit symbols has important conse-
quences for learnability and usability. In Harel (1987) it was hypothesized that an
elaborated symbol would be better understood and remembered if itexpresses the main and
salient variables in its referent. Here, we additionally hypothesize that a tacit symbol can
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be more meaningfully used when its referent is encapsulated into a conceptual entity. That
is, in developing a symbol for a concept one must try to match the degree of elaboration of
the symbol with the degree of elaboration of the user’s concept, which in turn must match
the user’sneedsfor the task athand. After all, in some cases it is important to suppress detail,
and in others the detailed structure plays a role in what one is trying to do. It seems, then,
that one’s control of the amount of structure explicitly represented in the symbolism is a
major factor in mathematical thinking, because one can adjust the “focus of one’s mental
microscope” by adjusting the notation. This we believe to be an important facilitating factor
that notations offer us.

3. SUMMARY

We hope to have introduced some useful ways of thinking about some important aspects
of the learning of mathematics that highlight the role of conceptual entities and their
relationships with mathematical notations. We regard this chapter as but a beginning into
an area of research that others may find productive to pursue in the future.

In §1 we laid out some of the circumstances under which conceptual entities are created
and used and what their cognitive function might be, often by pointing to consequences in
students’ reasoning processes where they have not yet been mentally constructed. We
observed three cognitive functions:

+ Alleviating working memory or processing load when concepts involve mul-
tiple constituent elements, facilitating comprehension of complex concepts,

» the cases of “uniform” operators, “point-wise” operators, and “object-valued
operators”,

= assisting with the focus of attention on appropriate structure in problem solving.

These functions, undoubtedly, play an important role in mathematical thinking and in
fostering the vertical growth of mathematical ideas, at all levels.

In §2 we analyzed the key rolc that notations play in the entification process by helping
substitute names for complex conceptual structures and/or operations. We have discussed
three aspects of the interaction between formation of conceptual entities and mathematical
notation:

» the role of mathematical notation in forming conceptual entities,

» different types of mathematical notations — elaborated and tacit notations, and
the manner in which they represent conceptual structure,

* notations as substitutes for concepts.

Justas notations can help the formation and application of mental entities, notations can act
as substitutes for conceptual entities, supplanting the need for them. It is here where both
the great power and the great danger in using mathematical notation systems become
particularly and unavoidably evident. Accompanying the great power of notations as aids
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to mathematical thought based on their identity-management role and their structure-
substitution role is the great danger that the notations do not refer to any mental content
beyond the experienced physical structure of the notations themselves, e.g., as when one
deals with an algebraic statement as a character string. This seems to be the case with
altogether too many students. While the inventors of notations created them to express and
perhaps elaborate their own pre-existing conceptions, in schools we often begin inreverse
order, concentrating on manipulation of notations, e.g., the techniques of differentiation
and integration in calculus, before providing sufficient experience that would enable the
building of mental referents for those notations (Davis, 1986). Students should be given
opportunities to build their own notational expressions of their ideas, which can then be
guided in the direction of the standard ones. In this way, one builds both notations and
conceptions simultaneously, rather than building one or the other first and then attempting
to connect the two.





