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50 Linear Algebra
Items

At the end of four weeks, the two groups were given the same test. The
items in the test were chosen to be simple problems on the vector-space
concept, which can be solved directly by applying the vector-space definition.

geometric systems, that serve as physical ref:
e ' physical erents. The algebraic
ot leli, f;a?gnhaqu easily visualized representation that desssc,;tii)?st’hg .
it thess syuerne o s.e oreover, when beginning  students are presenteg
B i,n na}; nc?unter, probably for the first time, mathematical
ot o D ure from .the number system. They have diffic ]{':al
ncton the mathemz:tialcollgctlon of numbers, such as g matrix l:)rt]es
system that o e tca entity; hamely, a mathematical object wi’th' .
mltiplicaton ot s structure and its own operations—additio alar
ors. Nevertheless, any system used in the :n'?sdd§ca]ar
odiment

Problem 1; Which of the following sets is a vector-space? Justify your answer.

a. W, = (xy)y=2x|
b. W,o= [(x,y):y= —2x+ 1.
Problem 2: Let ¢ and 8 be vectors in the vector-space V. We define L= [xpixis a

real number}, and L=g+L,.

roces, Would have no COIlStIuCtlve cognitive etieCt if thc SltuathIlS be]ﬂg
g
CmbOdIGd are not famlhal alld h.IHy underStOOd by the Student.

Method
Subjects and Procedure
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sophomores enr ; Study were  seventy-two
technology proormad In a required linear algebra course dzzFOHd-semester
gram. All students had the same formal lgged for the
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the high school
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were divided ra; , nclude linear algebra co
students each ;?Z?Sé’elftlto two groups, A and B con;;:ir:,tg- TI;e l.sltudents
: i ’ of thirty-si

three one-hour | nis were taught linear al b . y-s1x

ect . gebra by o
mainly the system ulr{is te ach week during one semester. ):Fh: € instructor for
o illustrate abstract ideas he had t;nstlzuctor used
ught, without

a, Prove that L is a subspace of V.

b. Prove that S-p is a vector in L.

Problem 3: The square of numbers:

4 9 2
3 57
g 1 6
onal has the

is called a magic square because each row, each column, and each diag

same total sum of entries.
Let W be the set of all magic squares. Define two operations on magic squares so

that W will be a vector-space over the real numbers. Justify your answer.

and W, are non-trivial subspaces of a vector-space whose

Problem 4: W,
e? Justify your answer.

intersection is the zero vector. Is W,UW, a vector-spac
blem 1 (i.e., with different numbers and different
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2} io rac ‘¢ : |
Tegular’ treatment ag Group A f us lecture. Group B received th act agreement by another two experts categorized students’ responses into the
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are represented _Special” treatment of show; : e other :
geometricall owing how vect -
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were Dresentege wih the institutional program re * ‘
linear equation w(l;th the spaces of polynomials duirements, Groups A and B . Categories of Answers
S. Grol » matrj : : . . - o
the space of the g up B Was presented in the second ;]ces, and solutions of . We considered three variables in the students’ answers: (a) description;- (b)
subjects were previoreclted Ilne-§egments without numeri our of recitation with final-answer; and (c) justification of answer.
prerequisite physics gguy acquainted with the ideg of (;:r ical coordinates. These Description. We examined the descriptions that the students used to express
i . 1Se, i ; irected line- . ot . -
directed line-segments o d’ m¢Whlch they were taught th, ed h{le segment in a the problems and the solutions, by classifying their answers into three
1d their operations addition g de physical meaning of 5 categories: ,
3 N SCaIar m R - . .
Hiiplication. W 1. Geometric description (GD): The students’ answers involved written geometric
3 descriptions, such as: «The clements in W, are points 01:1 a %me going through the
origin,” or graphical descriptions such as the one shown in Figure 1.
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Fi i i
gure 1. A graphical description in an answer to Problem 2
m 2.
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Distributions of the Categories

Description, The distribution o

given in Table 1. A ¢ { categories
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Table 1
Percents of Categorizations of the Description Variable

Categories
Problem Group Geometric  Algebraic Others x(df=1)
Description  Description
la A 11.1 66.6 22.2 7.96*
B 36.1 36.1 27.7
1b A 8.3 69.4 22.2 15.30**
B 41.6 25.0 333
2a A 13.8 75.0 11.1 12.24**
B 47.2 33.3 19.4
2b A 11.1 63.8 25.0 9,98
B 44.4 36.1 194
4 A 8.3 72.1 19.5 21.09**
B 52.7 22.2 25.0

Note. x* computed on GD-AD split.
*n<.01 ** p<.001.

Final-answer. The distribution of the final answer variable is given in Table
2. Within Group B, in Problems la, 1b, and 4, about 80% of the students
gave a correct final answer and less than 6% gave an incorrect final answer.
Within Group A, in the same problems, about 60% of the students gave
correct final answers to Problems 1a and 1b and only about 30% gave correct
final answers to Problem 4; in either case, more than 27% arrived at incorrect
final answers. Within the two groups, in Problem 3, the stability of almost
equal number of correct and incorrect final answers was reflected by the
non-significant differences. As overall result, a comparison between CF and
IF categories across the two Groups A and B showed that more correct final
answers were given by students from Group B than by students from Group
A. These differences are significant (p<.01) in problems la, 1b, and 4, but
not significant in Problem 3.

Justification. The distribution of the justification variable is given in Table
3. In this table the results of the following cases are depicted: (a) CF+CJ
Category: correct final answer with correct justification (for Problem 2, CJ
Category);(b)CF +1J Category: correct final answer with incorrect justification
(for Problem 2, 1J Category);(c)CF+AJ Category: correct final answer with
absence of justification (for Problem 2, AJ Category). The overall results of
these cases support our hypothesis about the superior effect of the geometrical
approach used. However, to substantiate this superiority, we do not need to
analyze all these cases; the following analysis will be sufficient.
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Table 2
p .
ercents of Categorizations of the Final Answer Variab]
e

Categories
PTObIem Gr0u \\
p . Correct Incorrect Absence of 2
) inal Answer  Fipa) Answer  Fipal Ansv(ze X(df=1)
a A !
69.4 217 2.7
: 6.44%
B
83.3 7.64%%
1b 2.7 '
A 63.8 30.5 ‘;g 27,1944
: 4.23*
B
80.5 8.86%*
3 2.7 86
A 44.4 333 212626 26.19%x+
: .57
B
50.0
4 33.3 049
A 16.
36.1 30.6 33 36 o
: .16
B 80.5 54 11.71%*
. 13.9 23.63 %%

i\lmfe.x2 computed on CF-IF spli¢
P<.05. **p< 01, *rikp <001 ‘
Tee cases in the Justication Variable
brone Categories
= m  Group CF+ CJ CJ CF+1J 1J CF
> +AlJ A
55.5 —_ 13.8 — : o
Iy 0 — 69.4

B
1b A 3 P 5=
A 3 27 _ 2.7 P
N Boow } i _ 50 o
A ;; - 361 _ 11 0"
N B - 27 _ 199 o
20 | - 2T - . 100
3 00— 250 109
O~ 58 19
A 22 - 2n2 0 o
\ K 8- 166  _ 0 _ o
FooSr - 194  _ o 61
. - 84 _ 350  _ o
. - 80,5

N
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When dichotomizing the answers as belonging-versus-not-belonging to
CF+ CJ category and subjecting these dichotomies across Groups A and B to
a x° tests, the stability of almost equal distributions of the results belonging to
Problems la, 1b, and 3 is reflected by the non-significant differences. (The
values of x? test are, respectively, .88, 1.39, and 1.1; df = 1). The difference
in Problem 4, on the other hand, is significant at the 0.001 level o2 = 15.78,
df = 1).

When dichotomizing the answers given to Problems 2a and 2b as belonging-
verus-not-belonging to CJ category, almost half of Group A but less than
one-fourth of Group B gave incorrect justification. when subjecting these
dichotomies to a x test, the differences are significant at the .05 level. (The
values of x* test are, respectively, 4.95, and 4.65, df = 1).

Finally, a comparison between the number of CF + CJ in Problems 1 and
the number of CJ in Problem 4 shows a significant (p<.0001; Z = —2.76)
increase, from 44.4% average to a 76.2% average.

Discussion

Because of the equally low achievement of the two groups in solving
Problem 3 (see Tables 2 and 3), the conclusions about the differentiations
between Groups A and B in understanding the vector-space concept will be
drawn from the responses to the other problems. However, the results in
Problem 3 support the viewpoint we expressed in the introduction about the
difficulties students have with the embodiment of algebraic systems whose
elements are collections of numbers or functions. This viewpoint is deeply
related to the understanding of the nature of mathematical objects which
requires special research as well.

Our hypothesis about the superior effect of familiar geometric
embodiments, as compared to unfamiliar algebraic embodiments, is confirmed
by the results we have shown. First, the fact that in the three Problems 1, 2,
and 4, a geometric description occurred more often in Group B than in Group
A and an algebraic description occurred more often in Group A than in
Group B confirms that the instructional approach and the kind of description
chosen by the students were not independent (Table 1). Second, in Problems 1

and 4, in which the students were required to determine if a specific model is
a vector-space, many students from Group B gave a correct final answer and
only a few students gave an incorrect final answer. Within Group A, although
relatively many students gave a correct final answer, still many arrived at an
incorrect final answer. Nevertheless, more correct final answers were given by
students from Group B than from Group A and less incorrect final answers
were given by students from Group B than from Group A. Third, in Problem

2, in which the students were required to prove general statements, only a few
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stude i
Grou;t; from_Group B gave Incorrect justificatio
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General Implications

Implications for those involved in teaching abstract mathematical systems,
such as linear algebra or group theory, are that the embodiment process is
essential for constructing a desired concept image of abstract concepts. But a
special embodiment process is appropriate for this goal: The factors of
familiarity and mode of representation must be taken into account in applying
the principle of multiple embodiments. Familiar geometric embodiments seem
to be a significant contribution to the concept image formation, and the
mathematical models whose elements are a collection of numbers or functions
must be approached carefully in embodying them in abstract systems.

Finally, we indicate that we are unable to explain why certain students in
Group A continued to prefer the geometric mode to which they were not
exposed or why certain students in Group B continued to prefer the algebraic
mode while others chose the geometric mode. This suggests a further

investigation.
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